हिंदी

For the Following Differential Equation Verify that the Accompanying Function is a Solution: Differential Equation Function Y = ( D Y D X ) 2 Y = 1 4 ( X ± a ) 2 - Mathematics

Advertisements
Advertisements

प्रश्न

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]
योग

उत्तर

We have,

\[y = \frac{1}{4} \left( x \pm a \right)^2 . . . . . \left( 1 \right)\]

Differentiating both sides of (1) with respect to x, we get

\[\frac{dy}{dx} = \frac{1}{4} \times 2\left( x \pm a \right)\]

\[ \Rightarrow \frac{dy}{dx} = \frac{1}{2}\left( x \pm a \right)\]

Squaring both sides we get

\[ \Rightarrow \left( \frac{dy}{dx} \right)^2 = \left[ \frac{1}{2}\left( x \pm a \right) \right]^2 \]

\[ \Rightarrow \left( \frac{dy}{dx} \right)^2 = \frac{1}{4} \left( x \pm a \right)^2 \]

\[ \Rightarrow \left( \frac{dy}{dx} \right)^2 = y ............\left[\text{Using } \left( 1 \right) \right]\]

\[ \therefore y = \left( \frac{dy}{dx} \right)^2\]

Hence, the given function is the solution to the given differential equation.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.03 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.03 | Q 21.5 | पृष्ठ २५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

\[y\frac{d^2 x}{d y^2} = y^2 + 1\]

Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]


Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]


Verify that \[y = ce^{tan^{- 1}} x\]  is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]


Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\]  satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]


Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex


\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

\[\sqrt{a + x} dy + x\ dx = 0\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

xy (y + 1) dy = (x2 + 1) dx


\[\sqrt{1 + x^2 + y^2 + x^2 y^2} + xy\frac{dy}{dx} = 0\]

Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]

 


\[\cos y\frac{dy}{dx} = e^x , y\left( 0 \right) = \frac{\pi}{2}\]

\[\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = \left( x + y \right)^2\]

\[\frac{dy}{dx} + 1 = e^{x + y}\]

\[2xy\frac{dy}{dx} = x^2 + y^2\]

Solve the following initial value problem:-

\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]


Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]


Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]


In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


The solution of the differential equation y1 y3 = y22 is


y2 dx + (x2 − xy + y2) dy = 0


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = ex + 1            y'' − y' = 0


Form the differential equation representing the family of curves y = a sin (x + b), where ab are arbitrary constant.


Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0


Find the differential equation whose general solution is

x3 + y3 = 35ax.


For each of the following differential equations find the particular solution.

(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0


Solve the following differential equation.

xdx + 2y dx = 0


Solve the following differential equation.

`dy/dx + y` = 3


The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.


 `dy/dx = log x`


Select and write the correct alternative from the given option for the question

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×