Advertisements
Advertisements
प्रश्न
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[y = \left( \frac{dy}{dx} \right)^2\]
|
\[y = \frac{1}{4} \left( x \pm a \right)^2\]
|
उत्तर
We have,
\[y = \frac{1}{4} \left( x \pm a \right)^2 . . . . . \left( 1 \right)\]
Differentiating both sides of (1) with respect to x, we get
\[\frac{dy}{dx} = \frac{1}{4} \times 2\left( x \pm a \right)\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{2}\left( x \pm a \right)\]
Squaring both sides we get
\[ \Rightarrow \left( \frac{dy}{dx} \right)^2 = \left[ \frac{1}{2}\left( x \pm a \right) \right]^2 \]
\[ \Rightarrow \left( \frac{dy}{dx} \right)^2 = \frac{1}{4} \left( x \pm a \right)^2 \]
\[ \Rightarrow \left( \frac{dy}{dx} \right)^2 = y ............\left[\text{Using } \left( 1 \right) \right]\]
\[ \therefore y = \left( \frac{dy}{dx} \right)^2\]
Hence, the given function is the solution to the given differential equation.
APPEARS IN
संबंधित प्रश्न
Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]
Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\] satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]
Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex
xy (y + 1) dy = (x2 + 1) dx
Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]
Solve the following initial value problem:-
\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]
Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]
Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]
In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
The solution of the differential equation y1 y3 = y22 is
y2 dx + (x2 − xy + y2) dy = 0
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = ex + 1 y'' − y' = 0
Form the differential equation representing the family of curves y = a sin (x + b), where a, b are arbitrary constant.
Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0
Find the differential equation whose general solution is
x3 + y3 = 35ax.
For each of the following differential equations find the particular solution.
(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0
Solve the following differential equation.
xdx + 2y dx = 0
Solve the following differential equation.
`dy/dx + y` = 3
The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.
`dy/dx = log x`
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution