हिंदी

The Solution of the Differential Equation Y1 Y3 = Y22 is - Mathematics

Advertisements
Advertisements

प्रश्न

The solution of the differential equation y1 y3 = y22 is

विकल्प

  • x = C1 eC2y + C3

  • y = C1 eC2x + C3

  • 2x = C1 eC2y + C3

  • none of these

MCQ

उत्तर

y = C1 eC2x + C3

 

\[y_1 y_3 = y_2^2 \]
\[\frac{y_3}{y_2} = \frac{y_2}{y_1}\]
\[ \Rightarrow \frac{\left( \frac{d^3 y}{d x^3} \right)}{\left( \frac{d^2 y}{d x^2} \right)} = \frac{\left( \frac{d^2 y}{d x^2} \right)}{\left( \frac{dy}{dx} \right)}\]
\[ \Rightarrow \int\frac{\frac{d}{dx}\left( \frac{d^2 y}{d x^2} \right)}{\left( \frac{d^2 y}{d x^2} \right)} = \int\frac{\frac{d}{dx}\left( \frac{dy}{dx} \right)}{\left( \frac{dy}{dx} \right)}\]
\[ \Rightarrow \ln\left( \frac{d^2 y}{d x^2} \right) = \ln\left( \frac{dy}{dx} \right) + \ln C_4 \]
\[ \Rightarrow \frac{d^2 y}{d x^2} = C_4 \frac{dy}{dx}\]
\[ \Rightarrow \int\frac{\frac{d}{dx}\left( \frac{dy}{dx} \right)}{\left( \frac{dy}{dx} \right)} = \int C_4 dx\]
\[\ln\left( \frac{dy}{dx} \right) = C_4 x + C_5 \]
\[ \Rightarrow \frac{dy}{dx} = e^{C_4 x + C_5} \]
\[\int dy = \int \left( e^{C_4 x + C_5} \right) dx\]
\[y = \frac{e^{C_4 x + C_5}}{C_4} + C_6 \]
\[y = \frac{e^{C_4 x} . e^{C_5}}{C_4} + C_6 \]
\[ \Rightarrow y = C_1 e^{C_2 x} + C_3 \]
where, 
\[ C_1 = \frac{e^{C_5}}{C_4}\]
\[ C_4 = C_2 \]
\[ C_6 = C_3 \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - MCQ [पृष्ठ १४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
MCQ | Q 14 | पृष्ठ १४०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Verify that \[y = ce^{tan^{- 1}} x\]  is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]


Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2


\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

\[\frac{dy}{dx} = x^5 \tan^{- 1} \left( x^3 \right)\]

\[\sqrt{a + x} dy + x\ dx = 0\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 xy\]

xy (y + 1) dy = (x2 + 1) dx


\[5\frac{dy}{dx} = e^x y^4\]

\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]

Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]

 


\[\frac{dr}{dt} = - rt, r\left( 0 \right) = r_0\]

\[\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1\]

In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.


(x + y) (dx − dy) = dx + dy


\[2xy\frac{dy}{dx} = x^2 + y^2\]

\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]


\[\left[ x\sqrt{x^2 + y^2} - y^2 \right] dx + xy\ dy = 0\]

Solve the following initial value problem:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]


Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


A population grows at the rate of 5% per year. How long does it take for the population to double?


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]


Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


Determine the order and degree of the following differential equations.

Solution D.E.
y = 1 − logx `x^2(d^2y)/dx^2 = 1`

Solve the following differential equation.

`y^3 - dy/dx = x dy/dx`


For the following differential equation find the particular solution.

`(x + 1) dy/dx − 1 = 2e^(−y)`,

when y = 0, x = 1


Solve the following differential equation.

`dy/dx + y = e ^-x`


Choose the correct alternative.

The differential equation of y = `k_1 + k_2/x` is


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


Choose the correct alternative.

Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in


Solve the differential equation:

dr = a r dθ − θ dr


Solve: `("d"y)/("d"x) + 2/xy` = x2 


A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution


Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.


The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×