हिंदी

D Y D X = Y Sin 2 X , Y ( 0 ) = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1\]

उत्तर

We have, 
\[\frac{dy}{dx} = y \sin2x, y\left( 0 \right) = 1\]
\[ \Rightarrow \frac{1}{y}dy = \sin 2x dx\]
Integrating both sides, we get
\[\int\frac{1}{y}dy = \int\sin 2x dx\]
\[ \Rightarrow \log \left| y \right| = - \frac{\cos 2x}{2} + C . . . . . (1)\]
\[\text{ Given:} x = 0, y = 1 . \]
Substituting the values of x and y in (1), we get
\[\log \left| 1 \right| = - \frac{1}{2} + C\]
\[ \Rightarrow C = \frac{1}{2}\]
Substituting the value of C in (1), we get
\[\log \left| y \right| = - \frac{\cos 2x}{2} + \frac{1}{2}\]
\[ \Rightarrow \log \left| y \right| = \frac{1 - \cos 2x}{2}\]
\[ \Rightarrow \log \left| y \right| = \sin {}^2 x\]
\[ \Rightarrow y = e^{sin^2} x \]
\[\text{ Hence, }y = e^{sin^2} x\text{ is the required solution }.\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.07 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.07 | Q 44 | पृष्ठ ५६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.


\[\frac{dy}{dx} = \tan^{- 1} x\]


\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

C' (x) = 2 + 0.15 x ; C(0) = 100


\[\left( x - 1 \right)\frac{dy}{dx} = 2 xy\]

\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]

\[\frac{dy}{dx} = e^{x + y} + e^y x^3\]

\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

\[\frac{dy}{dx} + \frac{\cos x \sin y}{\cos y} = 0\]

y (1 + ex) dy = (y + 1) ex dx


\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[\frac{dy}{dx} = e^{x + y} + e^{- x + y}\]

\[\frac{dr}{dt} = - rt, r\left( 0 \right) = r_0\]

\[\frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1\]

Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]


(y2 − 2xy) dx = (x2 − 2xy) dy


3x2 dy = (3xy + y2) dx


\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]

 

\[\left[ x\sqrt{x^2 + y^2} - y^2 \right] dx + xy\ dy = 0\]

Solve the following initial value problem:-

\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]


Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]


Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).


The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


Solve the following differential equation.

`dy/dx = x^2 y + y`


Choose the correct alternative.

Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in


Solve the differential equation:

dr = a r dθ − θ dr


Solve:

(x + y) dy = a2 dx


Solve the differential equation xdx + 2ydy = 0


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0

y = `a + b/x`

`(dy)/(dx) = square`

`(d^2y)/(dx^2) = square`

Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`

= `x square + 2 square`

= `square`

Hence y = `a + b/x` is solution of `square`


Solve the following differential equation 

sec2 x tan y dx + sec2 y tan x dy = 0

Solution: sec2 x tan y dx + sec2 y tan x dy = 0

∴ `(sec^2x)/tanx  "d"x + square` = 0

Integrating, we get

`square + int (sec^2y)/tany  "d"y` = log c

Each of these integral is of the type

`int ("f'"(x))/("f"(x))  "d"x` = log |f(x)| + log c

∴ the general solution is

`square + log |tan y|` = log c

∴ log |tan x . tan y| = log c

`square`

This is the general solution.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×