Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{dy}{dx} = y \sin2x, y\left( 0 \right) = 1\]
\[ \Rightarrow \frac{1}{y}dy = \sin 2x dx\]
Integrating both sides, we get
\[\int\frac{1}{y}dy = \int\sin 2x dx\]
\[ \Rightarrow \log \left| y \right| = - \frac{\cos 2x}{2} + C . . . . . (1)\]
\[\text{ Given:} x = 0, y = 1 . \]
Substituting the values of x and y in (1), we get
\[\log \left| 1 \right| = - \frac{1}{2} + C\]
\[ \Rightarrow C = \frac{1}{2}\]
Substituting the value of C in (1), we get
\[\log \left| y \right| = - \frac{\cos 2x}{2} + \frac{1}{2}\]
\[ \Rightarrow \log \left| y \right| = \frac{1 - \cos 2x}{2}\]
\[ \Rightarrow \log \left| y \right| = \sin {}^2 x\]
\[ \Rightarrow y = e^{sin^2} x \]
\[\text{ Hence, }y = e^{sin^2} x\text{ is the required solution }.\]
APPEARS IN
संबंधित प्रश्न
Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.
C' (x) = 2 + 0.15 x ; C(0) = 100
y (1 + ex) dy = (y + 1) ex dx
Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]
(y2 − 2xy) dx = (x2 − 2xy) dy
3x2 dy = (3xy + y2) dx
\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]
Solve the following initial value problem:-
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]
In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]
Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).
The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).
The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by
If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
Solve the following differential equation.
`dy/dx = x^2 y + y`
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
Solve the differential equation:
dr = a r dθ − θ dr
Solve:
(x + y) dy = a2 dx
Solve the differential equation xdx + 2ydy = 0
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0
y = `a + b/x`
`(dy)/(dx) = square`
`(d^2y)/(dx^2) = square`
Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`
= `x square + 2 square`
= `square`
Hence y = `a + b/x` is solution of `square`
Solve the following differential equation
sec2 x tan y dx + sec2 y tan x dy = 0
Solution: sec2 x tan y dx + sec2 y tan x dy = 0
∴ `(sec^2x)/tanx "d"x + square` = 0
Integrating, we get
`square + int (sec^2y)/tany "d"y` = log c
Each of these integral is of the type
`int ("f'"(x))/("f"(x)) "d"x` = log |f(x)| + log c
∴ the general solution is
`square + log |tan y|` = log c
∴ log |tan x . tan y| = log c
`square`
This is the general solution.