Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{dy}{dx} + \frac{\cos x \sin y}{\cos y} = 0\]
\[ \Rightarrow \frac{dy}{dx} = - \frac{\cos x \sin y}{\cos y}\]
\[ \Rightarrow \frac{\cos y}{\sin y}dy = - \cos x dx\]
\[ \Rightarrow \cot y dy = - \cos x dx\]
Integrating both sides, we get
\[\int\cot y dy = - \int\cos x dx\]
\[ \Rightarrow \log \left| \sin y \right| = - \sin x + C\]
\[\text{ Hence,} \log \left| \sin y \right| = - \sin x +\text{ C is the required solution .} \]
APPEARS IN
संबंधित प्रश्न
Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.
Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]
Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]
tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y)
Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]
The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.
y ex/y dx = (xex/y + y) dy
(y2 − 2xy) dx = (x2 − 2xy) dy
Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]
Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.
Define a differential equation.
If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = ex + 1 y'' − y' = 0
Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
xy = log y + k | y' (1 - xy) = y2 |
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = xn | `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0` |
Solve the following differential equation.
xdx + 2y dx = 0
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
Choose the correct alternative.
The solution of `x dy/dx = y` log y is
Solve:
(x + y) dy = a2 dx
`xy dy/dx = x^2 + 2y^2`
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`
Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.
Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.
The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.