हिंदी

Solve the Following Differential Equation: Y ( 1 − X 2 ) D Y D X = X ( 1 + Y 2 ) - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]

 

योग

उत्तर

We have,
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]
\[ \Rightarrow \frac{y}{1 + y^2}dy = \frac{x}{1 - x^2}dx\]
Integrating both sides ,
\[\int\frac{y}{1 + y^2}dy = \int\frac{x}{1 - x^2}dx\]
\[\text{ Substituting }1 + y^2 = t\text{ and }1 - x^2 = u \]
\[2ydy = dt\text{ and }- 2x dx = du\]
\[ \therefore \frac{1}{2}\int\frac{1}{t}dt = \frac{- 1}{2}\int\frac{1}{u}du\]
\[ \Rightarrow \frac{1}{2}\log \left| t \right| = - \frac{1}{2}\log \left| u \right| + \log C\]
\[ \Rightarrow \frac{1}{2}\log \left| 1 + y^2 \right| = - \frac{1}{2}\log \left| 1 - x^2 \right| + \log C\]
\[ \Rightarrow \frac{1}{2}\left[ \log \left| 1 + y^2 \right| + \log \left| 1 - x^2 \right| \right] = \log C\]
\[ \Rightarrow \log \left( \left| 1 + y^2 \right|\left| 1 - x^2 \right| \right) = 2 \log C\]
\[ \Rightarrow \left( 1 + y^2 \right)\left( 1 - x^2 \right) = C^2 \]
\[ \Rightarrow \left( 1 + y^2 \right)\left( 1 - x^2 \right) = C_1 , ...........\left(\text{where }C_1 = C^2\right) \]
\[\text{ Hence, }\left( 1 + y^2 \right)\left( 1 - x^2 \right) = C_1\text{ is the required solution.}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.07 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.07 | Q 38.2 | पृष्ठ ५५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[\sqrt[3]{\frac{d^2 y}{d x^2}} = \sqrt{\frac{dy}{dx}}\]

Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]

 


Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]

 


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]

Function y = ex + 1


\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

xy dy = (y − 1) (x + 1) dx


\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]

tan y dx + sec2 y tan x dy = 0


\[\cos x \cos y\frac{dy}{dx} = - \sin x \sin y\]

\[x\sqrt{1 - y^2} dx + y\sqrt{1 - x^2} dy = 0\]

\[\frac{dy}{dx} = 1 - x + y - xy\]

\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

\[\frac{dr}{dt} = - rt, r\left( 0 \right) = r_0\]

\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]


The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.


\[\frac{dy}{dx} = \frac{\left( x - y \right) + 3}{2\left( x - y \right) + 5}\]

Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]


The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?


In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?


The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.


A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.


Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`


Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


Solve the following differential equation.

`(dθ)/dt  = − k (θ − θ_0)`


Solve the following differential equation.

`x^2 dy/dx = x^2 +xy - y^2`


Solve the following differential equation.

`dy/dx + 2xy = x`


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


Solve the following differential equation

`x^2  ("d"y)/("d"x)` = x2 + xy − y2 


Choose the correct alternative:

Differential equation of the function c + 4yx = 0 is


The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×