Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[x\sqrt{1 - y^2} dx + y\sqrt{1 - x^2} dy = 0\]
\[ \Rightarrow y\sqrt{1 - x^2} dy = - x\sqrt{1 - y^2} dx\]
\[ \Rightarrow \frac{y}{\sqrt{1 - y^2}}dy = - \frac{x}{\sqrt{1 - x^2}}dx\]
Integrating both sides, we get
\[\int\frac{y}{\sqrt{1 - y^2}}dy = - \int\frac{x}{\sqrt{1 - x^2}}dx\]
\[\text{ Substituting }1 - y^2 = t\text{ and }1 - x^2 = u,\text{ we get }\]
\[ - 2y dy = dt\text{ and }-2x dy = du\]
\[ \therefore \frac{- 1}{2}\int\frac{1}{\sqrt{t}}dt = \frac{1}{2}\int\frac{1}{\sqrt{u}}du\]
\[ \Rightarrow - t^\frac{1}{2} = u^\frac{1}{2} + K\]
\[ \Rightarrow \sqrt{1 - x^2} + \sqrt{1 - y^2} = - K\]
\[ \Rightarrow \sqrt{1 - x^2} + \sqrt{1 - y^2} = C ..........\left(\text{ where, }C = - K \right)\]
\[\text{ Hence, }\sqrt{1 - x^2} + \sqrt{1 - y^2} =\text{ C is the required solution.}\]
APPEARS IN
संबंधित प्रश्न
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} = y\]
|
y = ax |
Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]
Function y = ex + 1
C' (x) = 2 + 0.15 x ; C(0) = 100
(1 + x2) dy = xy dx
(ey + 1) cos x dx + ey sin x dy = 0
y (1 + ex) dy = (y + 1) ex dx
Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.
In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).
x2 dy + y (x + y) dx = 0
2xy dx + (x2 + 2y2) dy = 0
3x2 dy = (3xy + y2) dx
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.
In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]
Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.
The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).
Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is
Which of the following differential equations has y = C1 ex + C2 e−x as the general solution?
Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].
Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
In each of the following examples, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = ex | `dy/ dx= y` |
Determine the order and degree of the following differential equations.
Solution | D.E. |
ax2 + by2 = 5 | `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx` |
Solve the following differential equation.
`dy/dx + y` = 3
The solution of `dy/ dx` = 1 is ______
Choose the correct alternative.
The integrating factor of `dy/dx - y = e^x `is ex, then its solution is
The function y = ex is solution ______ of differential equation
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Solve: ydx – xdy = x2ydx.