हिंदी

In a Simple Circuit of Resistance R, Self Inductance L and Voltage E, the Current I at Any Time T is Given by L D I D T + R I = E. - Mathematics

Advertisements
Advertisements

प्रश्न

In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]

योग

उत्तर

We have, 
\[L\frac{di}{dt} + Ri = E\]
\[ \Rightarrow \frac{di}{dt} + \frac{R}{L}i = \frac{E}{L} . . . . . \left( 1 \right)\]
\[ \therefore I . F . = e^{\int\frac{R}{L} dt} \]
\[ = e^{\frac{R}{L}t} \]
\[\text{ Multiplying both sides of (1) by }I . F . = e^{\frac{R}{L}t} , \text{ we get }\]
\[ e^{\frac{R}{L}t} \left( \frac{di}{dt} + \frac{R}{L}i \right) = e^{\frac{R}{L}t} \times \frac{E}{L}\]
\[ \Rightarrow e^{\frac{R}{L}t} \frac{di}{dt} + e^{\frac{R}{L}t} \frac{R}{L}i = e^{\frac{R}{L}t} \times \frac{E}{L}\]
Integrating both sides with respect to t, we get
\[ e^{\frac{R}{L}t} i = \frac{E}{L}\int e^{\frac{R}{L}t} dt + C\]
\[ \Rightarrow e^{\frac{R}{L}t} i = \frac{E}{L} \times \frac{L}{R} e^{\frac{R}{L}t} + C\]
\[ \Rightarrow e^{\frac{R}{L}t} i = \frac{E}{R} e^{\frac{R}{L}t} + C . . . . . . . . . . \left( 2 \right)\]
Now,
\[i = 0\text{ at }t = 0\]
\[ \therefore e^0 \times 0 = \frac{E}{R} e^0 + C\]
\[ \Rightarrow C = - \frac{E}{R}\]
\[\text{Putting the value of C in }\left( 2 \right),\text{ we get }\]
\[ e^{\frac{R}{L}t} i = \frac{E}{R} e^{\frac{R}{L}t} - \frac{E}{R}\]
\[ \Rightarrow i = \frac{E}{R} - \frac{E}{R} e^{- \frac{R}{L}t} \]
\[ \Rightarrow i = \frac{E}{R}\left( 1 - e^{- \frac{R}{L}t} \right)\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.11 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.11 | Q 10 | पृष्ठ १३४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]


Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].


Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]


Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


Verify that y = cx + 2c2 is a solution of the differential equation 

\[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0\].

Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]


Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]

Function y = log x


\[\frac{dy}{dx} + 2x = e^{3x}\]

\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

\[\sin^4 x\frac{dy}{dx} = \cos x\]

\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]

\[5\frac{dy}{dx} = e^x y^4\]

\[x\frac{dy}{dx} + \cot y = 0\]

dy + (x + 1) (y + 1) dx = 0


\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]


\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

(x + y) (dx − dy) = dx + dy


\[x\frac{dy}{dx} = x + y\]

2xy dx + (x2 + 2y2) dy = 0


Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]


The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.


Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.


Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\]  are rectangular hyperbola.


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0


Solve the following differential equation.

`(dθ)/dt  = − k (θ − θ_0)`


Solve the following differential equation.

`y^3 - dy/dx = x dy/dx`


For each of the following differential equations find the particular solution.

`y (1 + logx)dx/dy - x log x = 0`,

when x=e, y = e2.


Solve the following differential equation.

xdx + 2y dx = 0


Solve the following differential equation.

`dy/dx + y = e ^-x`


Solve the following differential equation.

`dy/dx + 2xy = x`


Solve the following differential equation.

`(x + a) dy/dx = – y + a`


x2y dx – (x3 + y3) dy = 0


`xy dy/dx  = x^2 + 2y^2`


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×