हिंदी

The Decay Rate of Radium at Any Time T is Proportional to Its Mass at that Time. Find the Time When the Mass Will Be Halved of Its Initial Mass. - Mathematics

Advertisements
Advertisements

प्रश्न

The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.

योग

उत्तर

Let the initial amount of radium be N and the amount of radium present at any time t be P.
Given:- \[\frac{dP}{dt}\alpha P\]
\[\Rightarrow \frac{dP}{dt} = - aP,\text{ where }a > 0\]
\[ \Rightarrow \frac{dP}{P} = - adt\]
Integrating both sides, we get
\[ \Rightarrow \log\left| P \right| = -\text{ at }+ C . . . . . \left( 1 \right)\]
Now,
\[P = N\text{ at }t = 0\]
\[\text{ Putting }P = N\text{ and }t = 0\text{ in }\left( 1 \right),\text{ we get }\]
\[\log\left| N \right| = C\]
\[\text{ Putting }C = \log\left| N \right|\text{ in }\left( 1 \right), \text{ we get }\]
\[\log\left| P \right| = - \text{ at }+ \log\left| N \right|\]
\[ \Rightarrow \log\left| \frac{N}{P} \right| =\text{ at }\]
According to the question, 
\[\log\left| \frac{N}{\frac{N}{2}} \right| =\text{ at }\]
\[ \Rightarrow \log\left| 2 \right| = \text{ at }\]
\[ \Rightarrow t = \frac{1}{a}\log\left| 2 \right|\]
Here, a is the constant of proportionality .

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.11 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.11 | Q 11 | पृष्ठ १३४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]


Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]

\[\left( x^2 + 1 \right)\frac{dy}{dx} = 1\]

\[\frac{dy}{dx} = \log x\]

\[\frac{dy}{dx} = \sin^2 y\]

\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

\[\frac{dy}{dx} = 1 - x + y - xy\]

\[\frac{dr}{dt} = - rt, r\left( 0 \right) = r_0\]

\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = \left( x + y + 1 \right)^2\]

\[\frac{dy}{dx} = \frac{\left( x - y \right) + 3}{2\left( x - y \right) + 5}\]

\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?


In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]


The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.


Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.


Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?


If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`


Solve the differential equation:

`"x"("dy")/("dx")+"y"=3"x"^2-2`


Solve the following differential equation.

`(x + a) dy/dx = – y + a`


Solve the following differential equation.

dr + (2r)dθ= 8dθ


Solve:

(x + y) dy = a2 dx


`xy dy/dx  = x^2 + 2y^2`


Solve the following differential equation y2dx + (xy + x2) dy = 0


Choose the correct alternative:

General solution of `y - x ("d"y)/("d"x)` = 0 is


The function y = ex is solution  ______ of differential equation


The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`


The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0


If `y = log_2 log_2(x)` then `(dy)/(dx)` =


Solve the differential equation

`y (dy)/(dx) + x` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×