Advertisements
Advertisements
प्रश्न
Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?
उत्तर
Let the original amount of the radium be N and the amount of radium at any time t be P.
Given:-\[\frac{dP}{dt}\alpha P\]
\[\Rightarrow \frac{dP}{dt} = - aP\]
\[ \Rightarrow \frac{dP}{P} = - adt\]
Integrating both sides, we get
\[ \Rightarrow \log\left| P \right| = - \text{ at }+ C . . . . . \left( 1 \right)\]
Now,
\[P = N\text{ at }t = 0\]
\[\text{ Putting }P = N\text{ and }t = 0\text{ in }\left( 1 \right), \text{ we get }\]
\[\log\left| N \right| = C\]
\[\text{ Putting }C = \log\left| N \right|\text{ in }\left( 1 \right), \text{ we get }\]
\[\log\left| P \right| = - \text{ at }+ \log\left| N \right|\]
\[ \Rightarrow \log\left| \frac{P}{N} \right| = - \text{ at }. . . . . \left( 2 \right)\]
According to the question,
\[P = \frac{1}{2}N\text{ at }t = 1590\]
\[\log\left| \frac{N}{2N} \right| = - 1590a\]
\[ \Rightarrow - \log 2 = - 1590a\]
\[ \Rightarrow a = \frac{1}{1590}\log 2\]
\[\text{ Putting }a = \frac{1}{1590}\log 2\text{ in }\left( 2 \right), \text{ we get }\]
\[\log\left| \frac{P}{N} \right| = - \left( \frac{1}{1590}\log 2 \right)t \]
\[\frac{P}{N} = e^{- \frac{\log 2}{1590}t} . . . . . . . . \left( 3 \right)\]
\[\text{ Putting }t = 1\text{ in }\left( 4 \right) \text{ to find the bacteria after 1 year, we get }\]
\[\frac{P}{N} = 0 . 9996\]
\[ \Rightarrow P = 0 . 9996N\]
\[\text{Percentage of amount disapeared in 1 year }= \left( \frac{N - P}{N} \right) \times 100\% = \frac{N - 0 . 9996N}{N} \times 100 \% = 0 . 04 \%\]
APPEARS IN
संबंधित प्रश्न
Show that y = AeBx is a solution of the differential equation
Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]
Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].
Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]
Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]
Function y = ex + 1
2xy dx + (x2 + 2y2) dy = 0
\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.
The solution of the differential equation y1 y3 = y22 is
The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is
The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting
Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?
Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(a^2-x^2)` `x+y(dy/dx)=0`
The price of six different commodities for years 2009 and year 2011 are as follows:
Commodities | A | B | C | D | E | F |
Price in 2009 (₹) |
35 | 80 | 25 | 30 | 80 | x |
Price in 2011 (₹) | 50 | y | 45 | 70 | 120 | 105 |
The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.
Solve the following differential equation.
xdx + 2y dx = 0
Solve the following differential equation.
`dy/dx + y = e ^-x`
A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.
`xy dy/dx = x^2 + 2y^2`
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`
Solve the following differential equation y log y = `(log y - x) ("d"y)/("d"x)`
Choose the correct alternative:
General solution of `y - x ("d"y)/("d"x)` = 0 is
State whether the following statement is True or False:
The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x
An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.
Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.
Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]