Advertisements
Advertisements
प्रश्न
2xy dx + (x2 + 2y2) dy = 0
उत्तर
\[2xy dx + \left( x^2 + 2 y^2 \right) dy = 0\]
\[ \Rightarrow \frac{dy}{dx} = - \frac{2xy}{x^2 + 2 y^2}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = - \frac{2v x^2}{x^2 + 2 v^2 x^2}\]
\[ \Rightarrow v + x\frac{dv}{dx} = - \frac{2v}{1 + 2 v^2}\]
\[ \Rightarrow x\frac{dv}{dx} = - \frac{2v}{1 + 2 v^2} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{- 3v - 2 v^3}{1 + 2 v^2}\]
\[ \Rightarrow \frac{1 + 2 v^2}{3v + 2 v^3}dv = - \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{1 + 2 v^2}{3v + 2 v^3}dv = - \int\frac{1}{x}dx\]
\[\text{ Substituting }3v + 2 v^3 = t,\text{ we get }\]
\[3\left( 1 + 2 v^2 \right) dv = dt\]
\[ \therefore \frac{1}{3}\int\frac{dt}{t}dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \frac{1}{3}\log \left| t \right| = - \log \left| x \right| + \log C\]
\[ \Rightarrow \frac{1}{3}\log \left| 3v + 2 v^3 \right| = - \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| 3v + 2 v^3 \right| = - 3 \log \left| x \right| + 3 \log C\]
\[ \Rightarrow \log \left| \left( 3v + 2 v^3 \right) \times x^3 \right| = \log C^3 \]
\[ \Rightarrow \left( 3v + 2 v^3 \right) \times x^3 = C^3 \]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow \left[ \left( 3 \times \frac{y}{x} + 2 \times \frac{y^3}{x^3} \right) \times x^3 \right] = C^3 \]
\[ \Rightarrow 3y x^2 + 2 y^3 = C_1 \]
\[\text{ Hence, }3y x^2 + 2 y^3 = C_1\text{ is the required solution } .\]
APPEARS IN
संबंधित प्रश्न
Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.
Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]
Verify that y = cx + 2c2 is a solution of the differential equation
Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\] is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
(y2 + 1) dx − (x2 + 1) dy = 0
x2 dy + y (x + y) dx = 0
Solve the following initial value problem:-
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.
Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\] = x (x + 1) and passing through (1, 0).
The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is
The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.
Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].
y2 dx + (x2 − xy + y2) dy = 0
Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.
Choose the correct option from the given alternatives:
The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is
For the following differential equation find the particular solution.
`(x + 1) dy/dx − 1 = 2e^(−y)`,
when y = 0, x = 1
Solve the following differential equation.
x2y dx − (x3 + y3 ) dy = 0
Solve the following differential equation.
`dy/dx + y` = 3
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
State whether the following is True or False:
The integrating factor of the differential equation `dy/dx - y = x` is e-x
`dy/dx = log x`
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)
Solution: `("d"y)/("d"x)` = cos(x + y) ......(1)
Put `square`
∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`
∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`
∴ (1) becomes `"dv"/("d"x) - 1` = cos v
∴ `"dv"/("d"x)` = 1 + cos v
∴ `square` dv = dx
Integrating, we get
`int 1/(1 + cos "v") "d"v = int "d"x`
∴ `int 1/(2cos^2 ("v"/2)) "dv" = int "d"x`
∴ `1/2 int square "dv" = int "d"x`
∴ `1/2* (tan("v"/2))/(1/2)` = x + c
∴ `square` = x + c
Solve the differential equation
`y (dy)/(dx) + x` = 0