हिंदी

Find the Differential Equation of All the Parabolas with Latus Rectum '4a' and Whose Axes Are Parallel to X-axis. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.

योग

उत्तर

The equation of the family of parabolas with latus rectum \[4a\] and axis parallel to the x-axis is given by 
\[\left( y - \beta \right)^2 = 4a\left( x - \alpha \right)..............(1)\]
where \[\alpha\text{ and }\beta\]  are two arbitrary constants.
As this equation has two arbitrary constants, we shall get second order differential equation.
Differentiating equation (1) with respect to x, we get

\[2\left( y - \beta \right)\frac{dy}{dx} = 4a..............(2)\]
Differentiating equation (2) with respect to x, we get
\[\left( y - \beta \right)\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx}\frac{dy}{dx} \right) = 0.............(3)\]
Now, from equation (2), we get
\[\left( y - \beta \right)\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx}\frac{dy}{dx} \right) = 0............(4)\]
From (3) and (4), we get 
\[\frac{2a}{\frac{dy}{dx}}\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 = 0\]
\[ \Rightarrow 2a\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^3 = 0 \]
It is the required differential equation.

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.02 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.02 | Q 12 | पृष्ठ १७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega +  b omega^2) =  omega^2`


Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.


Verify that y = cx + 2c2 is a solution of the differential equation 

\[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0\].

Verify that \[y = ce^{tan^{- 1}} x\]  is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x^3 \frac{d^2 y}{d x^2} = 1\]
\[y = ax + b + \frac{1}{2x}\]

\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]

\[\frac{dy}{dx} = x \log x\]

\[\frac{dy}{dx} = \frac{1 - \cos 2y}{1 + \cos 2y}\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 xy\]

\[\frac{dy}{dx} = \left( e^x + 1 \right) y\]

Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


\[\frac{dy}{dx} = y \tan 2x, y\left( 0 \right) = 2\] 

\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

x2 dy + y (x + y) dx = 0


\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

2xy dx + (x2 + 2y2) dy = 0


\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]

 

\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]


At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.


A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.


The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is


The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]


Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]


The solution of `dy/dx + x^2/y^2 = 0` is ______


Choose the correct alternative.

The integrating factor of `dy/dx -  y = e^x `is ex, then its solution is


Solve

`dy/dx + 2/ x y = x^2`


x2y dx – (x3 + y3) dy = 0


A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution


Find the particular solution of the following differential equation

`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.

Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x

∴ `1/"e"^(2y)  "d"y` = cos x dx

Integrating, we get

`int square  "d"y` = cos x dx

∴ `("e"^(-2y))/(-2)` = sin x + c1

∴ e–2y = – 2sin x – 2c1

∴ `square` = c, where c = – 2c

This is general solution.

When x = `pi/6`, y = 0, we have

`"e"^0 + 2sin  pi/6` = c

∴ c = `square`

∴ particular solution is `square`


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.


Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×