हिंदी

At Every Point on a Curve the Slope is the Sum of the Abscissa and the Product of the Ordinate and the Abscissa, and the Curve Passes Through (0, 1). Find the Equation of the Curve. - Mathematics

Advertisements
Advertisements

प्रश्न

At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.

उत्तर

According to the question,
\[\frac{dy}{dx} = x + xy\]
\[ \Rightarrow \frac{dy}{dx} = x\left( 1 + y \right)\]
\[\Rightarrow \frac{1}{1 + y}dy = x dx\]
Integrating both sides with respect to x, we get
\[\int\frac{1}{1 + y}dy = \int x dx\]
\[ \Rightarrow \log \left| 1 + y \right| = \frac{x^2}{2} + C\]
\[\text{ Since the curve passes through }\left( 0, 1 \right),\text{ it satisfies the above equation . }\]
\[ \therefore \log \left| 1 + 1 \right| = \frac{0}{2} + C\]
\[ \Rightarrow C = \log 2\]
Putting the value of C, we get
\[\log \left| 1 + y \right| = \frac{x^2}{2} + \log 2\]
\[ \Rightarrow \log \left| \frac{1 + y}{2} \right| = \frac{x^2}{2}\]
\[ \Rightarrow \frac{1 + y}{2} = e^\frac{x^2}{2} \]
\[ \Rightarrow y + 1 = 2 e^\frac{x^2}{2} \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.11 [पृष्ठ १३५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.11 | Q 23 | पृष्ठ १३५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].

 


Verify that y = cx + 2c2 is a solution of the differential equation 

\[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0\].

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x + y\frac{dy}{dx} = 0\]
\[y = \pm \sqrt{a^2 - x^2}\]

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} + y = y^2\]
\[y = \frac{a}{x + a}\]

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x^3 \frac{d^2 y}{d x^2} = 1\]
\[y = ax + b + \frac{1}{2x}\]

Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x


(1 + x2) dy = xy dx


x cos y dy = (xex log x + ex) dx


\[x\frac{dy}{dx} + \cot y = 0\]

\[\frac{dy}{dx} = e^{x + y} + e^y x^3\]

y (1 + ex) dy = (y + 1) ex dx


\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


\[\frac{dy}{dx} = 2 e^x y^3 , y\left( 0 \right) = \frac{1}{2}\]

\[2\left( y + 3 \right) - xy\frac{dy}{dx} = 0\], y(1) = −2

\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]


Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]


If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.

 

Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.


Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.


Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.


Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.


The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


The solution of the differential equation y1 y3 = y22 is


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting


Choose the correct option from the given alternatives:

The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is


Solve the following differential equation.

`(dθ)/dt  = − k (θ − θ_0)`


For the following differential equation find the particular solution.

`(x + 1) dy/dx − 1 = 2e^(−y)`,

when y = 0, x = 1


For each of the following differential equations find the particular solution.

`y (1 + logx)dx/dy - x log x = 0`,

when x=e, y = e2.


Solve the following differential equation.

x2y dx − (x3 + y3 ) dy = 0


Solve the following differential equation.

`(x + a) dy/dx = – y + a`


y2 dx + (xy + x2)dy = 0


 `dy/dx = log x`


Solve: ydx – xdy = x2ydx.


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×