Advertisements
Advertisements
Question
At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.
Solution
According to the question,
\[\frac{dy}{dx} = x + xy\]
\[ \Rightarrow \frac{dy}{dx} = x\left( 1 + y \right)\]
\[\Rightarrow \frac{1}{1 + y}dy = x dx\]
Integrating both sides with respect to x, we get
\[\int\frac{1}{1 + y}dy = \int x dx\]
\[ \Rightarrow \log \left| 1 + y \right| = \frac{x^2}{2} + C\]
\[\text{ Since the curve passes through }\left( 0, 1 \right),\text{ it satisfies the above equation . }\]
\[ \therefore \log \left| 1 + 1 \right| = \frac{0}{2} + C\]
\[ \Rightarrow C = \log 2\]
Putting the value of C, we get
\[\log \left| 1 + y \right| = \frac{x^2}{2} + \log 2\]
\[ \Rightarrow \log \left| \frac{1 + y}{2} \right| = \frac{x^2}{2}\]
\[ \Rightarrow \frac{1 + y}{2} = e^\frac{x^2}{2} \]
\[ \Rightarrow y + 1 = 2 e^\frac{x^2}{2} \]
APPEARS IN
RELATED QUESTIONS
Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.
Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].
Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]
Function y = log x
xy (y + 1) dy = (x2 + 1) dx
tan y dx + sec2 y tan x dy = 0
In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).
In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.
Solve the following initial value problem:-
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
Solve the following initial value problem:-
\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]
The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?
If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?
In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]
Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.
The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is
The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]
The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = ex + 1 y'' − y' = 0
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.
Solve the following differential equation.
`x^2 dy/dx = x^2 +xy - y^2`
Solve the following differential equation.
`(x + y) dy/dx = 1`
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0
Choose the correct alternative:
Differential equation of the function c + 4yx = 0 is
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
Solve the following differential equation
`y log y ("d"x)/("d"y) + x` = log y
Solve the following differential equation
sec2 x tan y dx + sec2 y tan x dy = 0
Solution: sec2 x tan y dx + sec2 y tan x dy = 0
∴ `(sec^2x)/tanx "d"x + square` = 0
Integrating, we get
`square + int (sec^2y)/tany "d"y` = log c
Each of these integral is of the type
`int ("f'"(x))/("f"(x)) "d"x` = log |f(x)| + log c
∴ the general solution is
`square + log |tan y|` = log c
∴ log |tan x . tan y| = log c
`square`
This is the general solution.
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.
If `y = log_2 log_2(x)` then `(dy)/(dx)` =