English

Solve the Following Initial Value Problem:- Y ′ + Y = E X , Y ( 0 ) = 1 2 - Mathematics

Advertisements
Advertisements

Question

Solve the following initial value problem:-

\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]

Sum

Solution

We have,
\[y' + y = e^x \]
\[ \Rightarrow \frac{dy}{dx} + y = e^x . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form 
\[\frac{dy}{dx} + Py = Q\]
\[\text{ where }P = 1\text{ and }Q = e^x \]
\[ \therefore I . F . = e^{\int P\ dx} \]
\[ = e^{\int1 dx} \]
\[ = e^x \]
\[\text{ Multiplying both sides of }\left( 1 \right)\text{ by }I . F . = e^x ,\text{ we get }\]
\[ e^x \left( \frac{dy}{dx} + y \right) = e^x e^x \]
\[ \Rightarrow e^x \frac{dy}{dx} + e^x y = e^{2x} \]
Integrating both sides with respect to x, we get
\[y e^x = \int e^{2x} dx + C\]
\[ \Rightarrow y e^x = \frac{e^{2x}}{2} + C . . . . . \left( 2 \right)\]
Now, 
\[y\left( 0 \right) = \frac{1}{2}\]
\[ \therefore \frac{1}{2} e^0 = \frac{e^0}{2} + C\]
\[ \Rightarrow C = 0\]
\[\text{ Putting the value of C in }\left( 2 \right),\text{ we get }\]
\[y e^x = \frac{e^{2x}}{2}\]
\[ \Rightarrow e^x = \frac{e^x}{2}\]
\[\text{ Hence, }y = \frac{e^x}{2}\text{ is the required solution.}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.10 [Page 107]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.10 | Q 37.01 | Page 107

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.


Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]

 


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x


Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2


\[\left( x^2 + 1 \right)\frac{dy}{dx} = 1\]

\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

\[\sqrt{1 - x^4} dy = x\ dx\]

xy (y + 1) dy = (x2 + 1) dx


Solve the differential equation \[\frac{dy}{dx} = e^{x + y} + x^2 e^y\].

(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0


Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).


\[\frac{dy}{dx} = \tan\left( x + y \right)\]

x2 dy + y (x + y) dx = 0


(x2 − y2) dx − 2xy dy = 0


\[2xy\frac{dy}{dx} = x^2 + y^2\]

Solve the following initial value problem:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]


Solve the following initial value problem:-

\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]


A population grows at the rate of 5% per year. How long does it take for the population to double?


The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.


Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.

 

Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.


Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = xn `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0`

Determine the order and degree of the following differential equations.

Solution D.E.
y = 1 − logx `x^2(d^2y)/dx^2 = 1`

Solve the following differential equation.

xdx + 2y dx = 0


Solve the following differential equation.

`dy/dx + 2xy = x`


Solve the differential equation:

`e^(dy/dx) = x`


y dx – x dy + log x dx = 0


Select and write the correct alternative from the given option for the question 

Differential equation of the function c + 4yx = 0 is


Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.


The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.


Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.


Solve: ydx – xdy = x2ydx.


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×