Advertisements
Advertisements
Question
x2 dy + y (x + y) dx = 0
Solution
We have,
\[ x^2 dy + y\left( x + y \right) dx = 0\]
\[ \Rightarrow x^2 dy = - y\left( x + y \right) dx\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- y\left( x + y \right)}{x^2}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{- vx\left( x + vx \right)}{x^2}\]
\[ \Rightarrow v + x\frac{dv}{dx} = - v\left( 1 + v \right)\]
\[ \Rightarrow x\frac{dv}{dx} = - v - v - v^2 \]
\[ \Rightarrow x\frac{dv}{dx} = - \left( v^2 + 2v \right)\]
\[ \Rightarrow \frac{dv}{\left( v^2 + 2v \right)} = - \frac{dx}{x}\]
\[ \Rightarrow \frac{dv}{v\left( v + 2 \right)} = - \frac{dx}{x}\]
Integrating both sides, we get
\[\int\frac{dv}{v\left( v + 2 \right)} = - \int\frac{dx}{x}\]
\[ \Rightarrow \frac{1}{2}\int\left[ \frac{1}{v} - \frac{1}{v + 2} \right]dv = - \int\frac{dx}{x}\]
\[ \Rightarrow \frac{1}{2}\left[ \int\frac{1}{v}dv - \int\frac{1}{v + 2}dv \right] = - \int\frac{dx}{x}\]
\[ \Rightarrow \frac{1}{2}\left[ \log \left| v \right| - \log \left| v + 2 \right| \right] = - \log \left| x \right| + \log C\]
\[ \Rightarrow \frac{1}{2}\log \left| \frac{v}{v + 2} \right| = \log \left| \frac{C}{x} \right| \]
\[ \Rightarrow \log \left| \frac{v}{v + 2} \right| = 2\log \left| \frac{C}{x} \right|\]
\[ \Rightarrow \log \left| \frac{v}{v + 2} \right| = \log \left| \frac{C^2}{x^2} \right|\]
\[ \Rightarrow \frac{v}{v + 2} = \frac{C^2}{x^2}\]
\[ \Rightarrow \frac{\frac{y}{x}}{\frac{y}{x} + 2} = \frac{C^2}{x^2}\]
\[ \Rightarrow \frac{y}{y + 2x} = \frac{C^2}{x^2}\]
\[ \Rightarrow x^2 y = C^2 \left( y + 2x \right)\]
\[ \Rightarrow x^2 y = K\left( y + 2x \right) ..........\left(\text{Where, }K = C^2 \right)\]
APPEARS IN
RELATED QUESTIONS
Show that y = AeBx is a solution of the differential equation
Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]
Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x
xy (y + 1) dy = (x2 + 1) dx
x cos y dy = (xex log x + ex) dx
(y + xy) dx + (x − xy2) dy = 0
(y2 + 1) dx − (x2 + 1) dy = 0
Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.
In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).
The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?
Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).
At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.
Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.
Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]
Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = ex + 1 y'' − y' = 0
Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.
Determine the order and degree of the following differential equations.
Solution | D.E. |
y = 1 − logx | `x^2(d^2y)/dx^2 = 1` |
Solve the following differential equation.
y2 dx + (xy + x2 ) dy = 0
Solve the following differential equation.
`dy/dx + 2xy = x`
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0
For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Solve the following differential equation
sec2 x tan y dx + sec2 y tan x dy = 0
Solution: sec2 x tan y dx + sec2 y tan x dy = 0
∴ `(sec^2x)/tanx "d"x + square` = 0
Integrating, we get
`square + int (sec^2y)/tany "d"y` = log c
Each of these integral is of the type
`int ("f'"(x))/("f"(x)) "d"x` = log |f(x)| + log c
∴ the general solution is
`square + log |tan y|` = log c
∴ log |tan x . tan y| = log c
`square`
This is the general solution.
Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.
Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]