Advertisements
Advertisements
Question
Solution
We have,
\[\frac{dy}{dx} = \frac{y - x}{y + x}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{vx - x}{vx + x}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{x\left( v - 1 \right)}{x\left( v + 1 \right)}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v - 1}{v + 1} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v - 1 - v^2 - v}{v + 1}\]
\[ \Rightarrow x\frac{dv}{dx} = - \frac{v^2 + 1}{v + 1}\]
\[ \Rightarrow \frac{v + 1}{v^2 + 1}dv = - \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{v + 1}{v^2 + 1}dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{v}{v^2 + 1}dv + \int\frac{1}{v^2 + 1}dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \frac{1}{2}\int\frac{2v}{v^2 + 1}dv + \int\frac{1}{v^2 + 1}dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \frac{1}{2}\log \left| v^2 + 1 \right| + \tan^{- 1} v = - \log \left| x \right| + C\]
\[ \Rightarrow \frac{1}{2}\log \left| v^2 + 1 \right| + \log \left| x \right| + \tan^{- 1} v = C\]
\[ \Rightarrow \log \left| v^2 + 1 \right| + 2 \log \left| x \right| + 2 \tan^{- 1} v = 2C\]
\[ \Rightarrow \log \left| v^2 + 1 \right| + \log \left| x^2 \right| + 2 \tan^{- 1} v = 2C\]
\[ \Rightarrow \log \left| \left( v^2 + 1 \right) x^2 \right| + 2 \tan^{- 1} v = 2C \]
\[\text{ Substituting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow \log \left| \left( \frac{y^2}{x^2} + 1 \right) x^2 \right| + 2 \tan^{- 1} \frac{y}{x} = 2C\]
\[ \Rightarrow \log \left| \left( y^2 + x^2 \right) \right| + 2 \tan^{- 1} \frac{y}{x} = k .........\left(\text{where }k = 2C \right)\]
APPEARS IN
RELATED QUESTIONS
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].
Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]
Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2
(1 + x2) dy = xy dx
x cos2 y dx = y cos2 x dy
Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]
3x2 dy = (3xy + y2) dx
Solve the following initial value problem:-
\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]
The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?
Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.
Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.
The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).
The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is
The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting
Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
In each of the following examples, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = ex | `dy/ dx= y` |
Choose the correct alternative.
The solution of `x dy/dx = y` log y is
Solve the following differential equation
`x^2 ("d"y)/("d"x)` = x2 + xy − y2
The function y = ex is solution ______ of differential equation
State whether the following statement is True or False:
The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x
Solve the following differential equation
sec2 x tan y dx + sec2 y tan x dy = 0
Solution: sec2 x tan y dx + sec2 y tan x dy = 0
∴ `(sec^2x)/tanx "d"x + square` = 0
Integrating, we get
`square + int (sec^2y)/tany "d"y` = log c
Each of these integral is of the type
`int ("f'"(x))/("f"(x)) "d"x` = log |f(x)| + log c
∴ the general solution is
`square + log |tan y|` = log c
∴ log |tan x . tan y| = log c
`square`
This is the general solution.
Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)
Solution: `("d"y)/("d"x)` = cos(x + y) ......(1)
Put `square`
∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`
∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`
∴ (1) becomes `"dv"/("d"x) - 1` = cos v
∴ `"dv"/("d"x)` = 1 + cos v
∴ `square` dv = dx
Integrating, we get
`int 1/(1 + cos "v") "d"v = int "d"x`
∴ `int 1/(2cos^2 ("v"/2)) "dv" = int "d"x`
∴ `1/2 int square "dv" = int "d"x`
∴ `1/2* (tan("v"/2))/(1/2)` = x + c
∴ `square` = x + c
Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is