Advertisements
Advertisements
Question
Solution
We have,
\[\sqrt{1 + x^2} dy + \sqrt{1 + y^2} dx = 0\]
\[\sqrt{1 + x^2} dy = - \sqrt{1 + y^2} dx\]
\[\frac{1}{\sqrt{1 + y^2}}dy = - \frac{1}{\sqrt{1 + x^2}}dx\]
Integrating both sides, we get
\[\int\frac{1}{\sqrt{1 + y^2}}dy = - \int\frac{1}{\sqrt{1 + x^2}}dx\]
\[ \Rightarrow \log \left| y + \sqrt{1 + y^2} \right| = - \log \left| x + \sqrt{1 + x^2} \right| + \log C\]
\[ \Rightarrow \log \left| y + \sqrt{1 + y^2} \right| + \log \left| x + \sqrt{1 + x^2} \right| = \log C\]
\[ \Rightarrow \log \left| \left( y + \sqrt{1 + y^2} \right)\left( x + \sqrt{1 + x^2} \right) \right| = \log C\]
\[ \Rightarrow \left( y + \sqrt{1 + y^2} \right)\left( x + \sqrt{1 + x^2} \right) = C\]
\[\text{ Hence, }\log \left( y + \sqrt{1 + y^2} \right)\left( x + \sqrt{1 + x^2} \right) =\text{ C is the required differential equation .} \]
APPEARS IN
RELATED QUESTIONS
Prove that:
`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`
Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].
Verify that y = cx + 2c2 is a solution of the differential equation
Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\] is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
dy + (x + 1) (y + 1) dx = 0
Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]
Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]
In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).
In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).
2xy dx + (x2 + 2y2) dy = 0
The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?
Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.
The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by
The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution
Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
The price of six different commodities for years 2009 and year 2011 are as follows:
Commodities | A | B | C | D | E | F |
Price in 2009 (₹) |
35 | 80 | 25 | 30 | 80 | x |
Price in 2011 (₹) | 50 | y | 45 | 70 | 120 | 105 |
The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
xy = log y + k | y' (1 - xy) = y2 |
Determine the order and degree of the following differential equations.
Solution | D.E. |
y = 1 − logx | `x^2(d^2y)/dx^2 = 1` |
For each of the following differential equations find the particular solution.
`y (1 + logx)dx/dy - x log x = 0`,
when x=e, y = e2.
Solve the following differential equation.
`dy/dx + y = e ^-x`
State whether the following is True or False:
The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.
Solve:
(x + y) dy = a2 dx
The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.
A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is