Advertisements
Advertisements
Question
The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.
Solution
Let P (x, y) be any point on the curve. The equation of the normal at P (x, y) to the given curve is given as \[Y - y = - \frac{1}{\frac{dy}{dx}}\left( X - x \right)\]
It is given that the curve passes through the point (3, 0). Then,
\[0 - y = - \frac{1}{\frac{dy}{dx}}\left( 3 - x \right)\]
\[ \Rightarrow - y = - \frac{1}{\frac{dy}{dx}}\left( 3 - x \right)\]
\[ \Rightarrow y\frac{dy}{dx} = 3 - x\]
\[ \Rightarrow y dy = \left( 3 - x \right)dx\]
\[ \Rightarrow \frac{y^2}{2} = 3x - \frac{x^2}{2} + C . . . . . \left( 1 \right)\]
\[\text{ Since the curve passes through the point }\left( 3, 4 \right), \text{ it satisfies the equation .} \]
\[ \Rightarrow \frac{4^2}{2} = 3\left( 3 \right) - \frac{3^2}{2} + C\]
\[ \Rightarrow C = 8 - 9 + \frac{9}{2}\]
\[ \Rightarrow C = \frac{9}{2} - 1 = \frac{7}{2}\]
\[\text{ Putting the value of C in }\left( 1 \right),\text{ we get }\]
\[\frac{y^2}{2} = 3x - \frac{x^2}{2} + \frac{7}{2}\]
\[ \Rightarrow y^2 = 6x - x^2 + 7\]
\[ \Rightarrow x^2 + y^2 - 6x - 7 = 0\]
APPEARS IN
RELATED QUESTIONS
Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]
Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]
Verify that y = cx + 2c2 is a solution of the differential equation
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} = y\]
|
y = ax |
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x
(sin x + cos x) dy + (cos x − sin x) dx = 0
tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y)
(y + xy) dx + (x − xy2) dy = 0
Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).
y ex/y dx = (xex/y + y) dy
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]
Solve the following initial value problem:-
\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]
Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.
A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.
The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
Solve the differential equation:
`"x"("dy")/("dx")+"y"=3"x"^2-2`
Form the differential equation from the relation x2 + 4y2 = 4b2
For each of the following differential equations find the particular solution.
`y (1 + logx)dx/dy - x log x = 0`,
when x=e, y = e2.
Solve the following differential equation.
`(x + a) dy/dx = – y + a`
Solve
`dy/dx + 2/ x y = x^2`
x2y dx – (x3 + y3) dy = 0
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0
y = `a + b/x`
`(dy)/(dx) = square`
`(d^2y)/(dx^2) = square`
Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`
= `x square + 2 square`
= `square`
Hence y = `a + b/x` is solution of `square`
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
Solve the differential equation `"dy"/"dx" + 2xy` = y
Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx