Advertisements
Advertisements
Question
tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y)
Solution
We have,
\[\tan y \frac{dy}{dx} = \sin \left( x + y \right) + \sin \left( x - y \right)\]
\[ \Rightarrow \tan y \frac{dy}{dx} = \sin x \cos y + \cos x \sin y + \sin x \cos y - \cos x \sin y\]
\[ \Rightarrow \tan y \frac{dy}{dx} = 2 \sin x\cos y\]
\[ \Rightarrow \frac{\tan y}{\cos y}dy = 2 \sin x dx\]
\[ \Rightarrow \tan y \sec y dy = 2 \sin x dx\]
Integrating both sides, we get
\[\int\tan y \sec y dy = 2\int\sin x dx\]
\[ \Rightarrow \sec y = - 2 \cos x + C\]
\[ \Rightarrow \sec y + 2 \cos x = C\]
\[\text{ Hence,} \sec y + 2 \cos x = \text{ C is the required solution .}\]
APPEARS IN
RELATED QUESTIONS
Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[y = \left( \frac{dy}{dx} \right)^2\]
|
\[y = \frac{1}{4} \left( x \pm a \right)^2\]
|
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x
(1 + x2) dy = xy dx
Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.
Solve the following initial value problem:-
\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]
The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.
Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).
Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\] at any point (x, y) on it.
The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.
The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.
The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
y2 dx + (x2 − xy + y2) dy = 0
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = ex + 1 y'' − y' = 0
Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.
Choose the correct alternative.
The differential equation of y = `k_1 + k_2/x` is
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Solve the following differential equation
`y log y ("d"x)/("d"y) + x` = log y
Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx
The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0