Advertisements
Advertisements
Question
y2 dx + (x2 − xy + y2) dy = 0
Solution
We have,
\[ y^2 dx + \left( x^2 - xy + y^2 \right) dy = 0\]
\[\frac{dy}{dx} = \frac{- y^2}{x^2 - xy + y^2}\]
This is a homogeneous differential equation.
\[\text{Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get}\]
\[v + x\frac{dv}{dx} = \frac{- v^2 x^2}{x^2 - v x^2 + v^2 x^2}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{- v^2}{1 - v + v^2}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{- v^2}{1 - v + v^2} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{- v - v^3}{1 - v + v^2}\]
\[ \Rightarrow \frac{1 - v + v^2}{v + v^3}dv = - \frac{1}{x}dx\]
\[ \Rightarrow \frac{1 + v^2 - v}{v\left( 1 + v^2 \right)}dv = - \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{1 + v^2 - v}{v\left( 1 + v^2 \right)}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1 + v^2}{v\left( 1 + v^2 \right)}dv - \int\frac{v}{v\left( 1 + v^2 \right)}dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1}{v}dv - \int\frac{1}{1 + v^2}dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \log \left| v \right| - \tan {}^{- 1} \left| v \right| = - \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| \frac{vx}{C} \right| = \tan^{- 1} v\]
\[ \Rightarrow \left| \frac{vx}{C} \right| = e^{\tan^{- 1} v} \]
\[\text{Putting }v = \frac{y}{x},\text{ we get}\]
\[ \Rightarrow \left| y \right| = C e^{\tan^{- 1} v} \]
\[\text{Hence, }\left| y \right| = C e^{\tan^{- 1} v}\text{ is the required solution.}\]
APPEARS IN
RELATED QUESTIONS
Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].
(ey + 1) cos x dx + ey sin x dy = 0
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y)
dy + (x + 1) (y + 1) dx = 0
A population grows at the rate of 5% per year. How long does it take for the population to double?
Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\] at any point (x, y) on it.
Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = ex + 1 y'' − y' = 0
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(a^2-x^2)` `x+y(dy/dx)=0`
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
xy = log y + k | y' (1 - xy) = y2 |
In each of the following examples, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = ex | `dy/ dx= y` |
Solve the following differential equation.
`(dθ)/dt = − k (θ − θ_0)`
Solve the following differential equation.
`(x + a) dy/dx = – y + a`
The solution of `dy/dx + x^2/y^2 = 0` is ______
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`
Solve the following differential equation y2dx + (xy + x2) dy = 0
Choose the correct alternative:
Solution of the equation `x("d"y)/("d"x)` = y log y is
A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.
The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of: