English

X ( X 2 − 1 ) D Y D X = 1 , Y ( 2 ) = 0 - Mathematics

Advertisements
Advertisements

Question

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y\left( 2 \right) = 0\]

Solution

We have, 
\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{x\left( x^2 - 1 \right)}\]
\[ \Rightarrow dy = \left\{ \frac{1}{x\left( x^2 - 1 \right)} \right\}dx\]
Integrating both sides, we get
\[\int dy = \int\left\{ \frac{1}{x\left( x^2 - 1 \right)} \right\}dx\]
\[ \Rightarrow y = \int\left\{ \frac{1}{x\left( x^2 - 1 \right)} \right\}dx\]
\[ \Rightarrow y = \int\frac{1}{x\left( x - 1 \right)\left( x + 1 \right)}dx\]
\[\text{ Let }\frac{1}{x\left( x - 1 \right)\left( x + 1 \right)} = \frac{A}{x} + \frac{B}{x - 1} + \frac{C}{x + 1}\]
\[ \Rightarrow 1 = A\left( x^2 - 1 \right) + B\left( x^2 + x \right) + C\left( x^2 - x \right)\]
\[ \Rightarrow 1 = \left( A + B + C \right) x^2 + \left( B - C \right)x - A\]
Equating the coefficients on both sides we get
\[A + B + C = 0 . . . . . \left( 1 \right)\]
\[B - C = 0 . . . . . \left( 2 \right)\]
\[A = - 1 . . . . . \left( 3 \right)\]
\[\text{ Solving }\left( 1 \right), \left( 2 \right)\text{ and }\left( 3 \right),\text{ we get }\]
\[A = - 1\]
\[B = \frac{1}{2}\]
\[C = \frac{1}{2}\]
\[ \therefore y = \frac{1}{2}\int\frac{1}{x - 1}dx - \int\frac{1}{x}dx + \frac{1}{2}\int\frac{1}{x + 1}dx\]
\[ = \frac{1}{2}\log\left| x - 1 \right| - \log\left| x \right| + \frac{1}{2}\log\left| x + 1 \right| + C\]
\[ = \frac{1}{2}\log\left| x - 1 \right| + \frac{1}{2}\log\left| x + 1 \right| - \log\left| x \right| + C\]
\[\text{ It is given that }y\left( 2 \right) = 0 . \]
\[ \therefore 0 = \frac{1}{2}\log\left| 2 - 1 \right| + \frac{1}{2}\log\left| 2 + 1 \right| - \log\left| 2 \right| + C\]
\[ \Rightarrow C = \log\left| 2 \right| - \frac{1}{2}\log\left| 3 \right|\]
Substituting the value of C, we get
\[y = \frac{1}{2}\log\left| x - 1 \right| + \frac{1}{2}\log\left| x + 1 \right| - \log\left| x \right| + \log\left| 2 \right| - \frac{1}{2}\log\left| 3 \right|\]
\[ \Rightarrow 2y = \log\left| x - 1 \right| + \log\left| x + 1 \right| - 2\log\left| x \right| + 2\log\left| 2 \right| - \log\left| 3 \right|\]
\[ \Rightarrow 2y = \log\left| x - 1 \right| + \log\left| x + 1 \right| - \log\left| x^2 \right| + \log 4 - \log 3\]
\[ \Rightarrow 2y = \log\frac{4\left( x - 1 \right)\left( x + 1 \right)}{3 x^2}\]
\[ \Rightarrow y = \frac{1}{2}\log\frac{4\left( x^2 - 1 \right)}{3 x^2}\]
\[\text{ Hence, } y = \frac{1}{2}\log\frac{4\left( x^2 - 1 \right)}{3 x^2}\text{ is the solution to the given differential equation }.\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.05 [Page 34]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.05 | Q 26 | Page 34

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]


Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]

 


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x^3 \frac{d^2 y}{d x^2} = 1\]
\[y = ax + b + \frac{1}{2x}\]

\[\frac{dy}{dx} + 2x = e^{3x}\]

(sin x + cos x) dy + (cos x − sin x) dx = 0


\[\frac{dy}{dx} = e^{x + y} + e^y x^3\]

\[\sqrt{1 + x^2} dy + \sqrt{1 + y^2} dx = 0\]

(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0


dy + (x + 1) (y + 1) dx = 0


\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

\[\frac{dy}{dx} = 2 e^{2x} y^2 , y\left( 0 \right) = - 1\]

\[\cos y\frac{dy}{dx} = e^x , y\left( 0 \right) = \frac{\pi}{2}\]

\[\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1\]

Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]

 

Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]


The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.


Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.

 

Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\]  = x (x + 1) and passing through (1, 0).


If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


The differential equation satisfied by ax2 + by2 = 1 is


The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]


The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.


Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


In each of the following examples, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = ex  `dy/ dx= y`

Determine the order and degree of the following differential equations.

Solution D.E.
y = 1 − logx `x^2(d^2y)/dx^2 = 1`

Solve the following differential equation.

`xy  dy/dx = x^2 + 2y^2`


Solve the differential equation:

dr = a r dθ − θ dr


 `dy/dx = log x`


Choose the correct alternative:

Solution of the equation `x("d"y)/("d"x)` = y log y is


Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)

Solution: `("d"y)/("d"x)` = cos(x + y)    ......(1)

Put `square`

∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`

∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`

∴ (1) becomes `"dv"/("d"x) - 1` = cos v

∴ `"dv"/("d"x)` = 1 + cos v

∴ `square` dv = dx

Integrating, we get

`int 1/(1 + cos "v")  "d"v = int  "d"x`

∴ `int 1/(2cos^2 ("v"/2))  "dv" = int  "d"x`

∴ `1/2 int square  "dv" = int  "d"x`

∴ `1/2* (tan("v"/2))/(1/2)` = x + c

∴ `square` = x + c


Find the particular solution of the following differential equation

`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.

Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x

∴ `1/"e"^(2y)  "d"y` = cos x dx

Integrating, we get

`int square  "d"y` = cos x dx

∴ `("e"^(-2y))/(-2)` = sin x + c1

∴ e–2y = – 2sin x – 2c1

∴ `square` = c, where c = – 2c

This is general solution.

When x = `pi/6`, y = 0, we have

`"e"^0 + 2sin  pi/6` = c

∴ c = `square`

∴ particular solution is `square`


Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×