English

If Sin X is an Integrating Factor of the Differential Equation D Y D X + P Y = Q , Then Write the Value of P. - Mathematics

Advertisements
Advertisements

Question

If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.

Sum

Solution

\[\text{ It is given that }\sin x \text{ is the integrating factor of the differential equation }\frac{dy}{dx} + Py = Q . \]
\[ \therefore e^{\int P\ dx} = \sin x\]
\[ \Rightarrow \int P\ dx = \log \left| \sin x \right|\]
\[ \Rightarrow \int P dx = \int\cot x dx .........\left[ \because \int\cot x dx = \log \left| \sin x \right| + C \right]\]
\[ \Rightarrow P = \cot x \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Very Short Answers [Page 138]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Very Short Answers | Q 13 | Page 138

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega +  b omega^2) =  omega^2`


\[\left( \frac{dy}{dx} \right)^2 + \frac{1}{dy/dx} = 2\]

\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 + xy = 0\]

\[x^2 \left( \frac{d^2 y}{d x^2} \right)^3 + y \left( \frac{dy}{dx} \right)^4 + y^4 = 0\]

Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.


Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]

\[\sin\left( \frac{dy}{dx} \right) = k ; y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = \frac{1 - \cos 2y}{1 + \cos 2y}\]

Solve the differential equation \[\frac{dy}{dx} = e^{x + y} + x^2 e^y\].

\[\sqrt{1 + x^2 + y^2 + x^2 y^2} + xy\frac{dy}{dx} = 0\]

\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]

y (1 + ex) dy = (y + 1) ex dx


(y + xy) dx + (x − xy2) dy = 0


\[\frac{dy}{dx} = y \tan 2x, y\left( 0 \right) = 2\] 

\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

\[\frac{dy}{dx} = 2 e^x y^3 , y\left( 0 \right) = \frac{1}{2}\]

\[\frac{dy}{dx} = \left( x + y + 1 \right)^2\]

(x + 2y) dx − (2x − y) dy = 0


\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]


Solve the following initial value problem:-

\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]


If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?


Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of  radium to decompose?


Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.


Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?


y2 dx + (x2 − xy + y2) dy = 0


Form the differential equation representing the family of curves y = a sin (x + b), where ab are arbitrary constant.


If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


For the following differential equation find the particular solution.

`(x + 1) dy/dx − 1 = 2e^(−y)`,

when y = 0, x = 1


Solve the following differential equation.

xdx + 2y dx = 0


Solve the differential equation:

`e^(dy/dx) = x`


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


Choose the correct alternative:

General solution of `y - x ("d"y)/("d"x)` = 0 is


The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×