मराठी

If Sin X is an Integrating Factor of the Differential Equation D Y D X + P Y = Q , Then Write the Value of P. - Mathematics

Advertisements
Advertisements

प्रश्न

If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.

बेरीज

उत्तर

\[\text{ It is given that }\sin x \text{ is the integrating factor of the differential equation }\frac{dy}{dx} + Py = Q . \]
\[ \therefore e^{\int P\ dx} = \sin x\]
\[ \Rightarrow \int P\ dx = \log \left| \sin x \right|\]
\[ \Rightarrow \int P dx = \int\cot x dx .........\left[ \because \int\cot x dx = \log \left| \sin x \right| + C \right]\]
\[ \Rightarrow P = \cot x \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Very Short Answers [पृष्ठ १३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Very Short Answers | Q 13 | पृष्ठ १३८

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Prove that:

`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`


Solve the equation for x: `sin^(-1)  5/x + sin^(-1)  12/x = pi/2, x != 0`


\[\frac{d^3 x}{d t^3} + \frac{d^2 x}{d t^2} + \left( \frac{dx}{dt} \right)^2 = e^t\]

\[\sqrt[3]{\frac{d^2 y}{d x^2}} = \sqrt{\frac{dy}{dx}}\]

Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.


Verify that y = cx + 2c2 is a solution of the differential equation 

\[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0\].

Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2


\[\left( x^2 + 1 \right)\frac{dy}{dx} = 1\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]

\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y\left( 2 \right) = 0\]

\[\frac{dy}{dx} = \sin^2 y\]

\[\frac{dy}{dx} = \left( e^x + 1 \right) y\]

\[5\frac{dy}{dx} = e^x y^4\]

Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).


\[\frac{dy}{dx} = \sec\left( x + y \right)\]

(x + y) (dx − dy) = dx + dy


x2 dy + y (x + y) dx = 0


\[x\frac{dy}{dx} = x + y\]

y ex/y dx = (xex/y + y) dy


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is


Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(a^2-x^2)`              `x+y(dy/dx)=0`


Determine the order and degree of the following differential equations.

Solution D.E
y = aex + be−x `(d^2y)/dx^2= 1`

Determine the order and degree of the following differential equations.

Solution D.E.
ax2 + by2 = 5 `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx`

For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


Solve the following differential equation.

`dy/dx + y` = 3


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


Choose the correct alternative.

Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in


Solve:

(x + y) dy = a2 dx


Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0


Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0


Solve the following differential equation

`x^2  ("d"y)/("d"x)` = x2 + xy − y2 


Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.


Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×