Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{dy}{dx} = \sin^2 y\]
\[ \Rightarrow \frac{dx}{dy} = \frac{1}{\sin^2 y}\]
\[ \Rightarrow dx = {cosec}^2 y dy\]
Integrating both sides, we get
\[\int dx = \int {cosec}^2 y dy\]
\[ \Rightarrow x = - \cot y + C\]
\[ \Rightarrow x + \cot y = C\]
\[\text{ Hence, }x + \cot y = \text{ C is the required solution }.\]
APPEARS IN
संबंधित प्रश्न
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].
Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[y = \left( \frac{dy}{dx} \right)^2\]
|
\[y = \frac{1}{4} \left( x \pm a \right)^2\]
|
(1 + x2) dy = xy dx
(ey + 1) cos x dx + ey sin x dy = 0
Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]
Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]
Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]
Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.
Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\]
2xy dx + (x2 + 2y2) dy = 0
Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]
The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.
If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.
Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\] at any point (x, y) on it.
Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.
Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.
Form the differential equation representing the family of curves y = a sin (x + b), where a, b are arbitrary constant.
If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`
Solve the following differential equation.
y2 dx + (xy + x2 ) dy = 0
Solve the following differential equation.
dr + (2r)dθ= 8dθ
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.
State whether the following is True or False:
The integrating factor of the differential equation `dy/dx - y = x` is e-x
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
Solve the following differential equation
`x^2 ("d"y)/("d"x)` = x2 + xy − y2
Choose the correct alternative:
Solution of the equation `x("d"y)/("d"x)` = y log y is
Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.