मराठी

D Y D X = Sin 2 Y - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} = \sin^2 y\]

उत्तर

We have,
\[\frac{dy}{dx} = \sin^2 y\]
\[ \Rightarrow \frac{dx}{dy} = \frac{1}{\sin^2 y}\]
\[ \Rightarrow dx = {cosec}^2 y dy\]
Integrating both sides, we get
\[\int dx = \int {cosec}^2 y dy\]
\[ \Rightarrow x = - \cot y + C\]
\[ \Rightarrow x + \cot y = C\]
\[\text{ Hence, }x + \cot y = \text{ C is the required solution }.\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.06 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.06 | Q 3 | पृष्ठ ३८

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]


Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].


Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]

 


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]

\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

\[\sin\left( \frac{dy}{dx} \right) = k ; y\left( 0 \right) = 1\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 xy\]

(1 + x2) dy = xy dx


Solve the differential equation \[\frac{dy}{dx} = e^{x + y} + x^2 e^y\].

(ey + 1) cos x dx + ey sin x dy = 0


Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]

 


Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]

 


\[2x\frac{dy}{dx} = 5y, y\left( 1 \right) = 1\]

\[\cos y\frac{dy}{dx} = e^x , y\left( 0 \right) = \frac{\pi}{2}\]

Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.


Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\] 

 


\[\frac{dy}{dx} + 1 = e^{x + y}\]

2xy dx + (x2 + 2y2) dy = 0


Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]


The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.

 

Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.


Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.


Form the differential equation representing the family of curves y = a sin (x + b), where ab are arbitrary constant.


If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`


Solve the following differential equation.

y2 dx + (xy + x2 ) dy = 0


Solve the following differential equation.

dr + (2r)dθ= 8dθ


Choose the correct alternative.

Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in


A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.


State whether the following is True or False:

The integrating factor of the differential equation `dy/dx - y = x` is e-x


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


Solve the following differential equation

`x^2  ("d"y)/("d"x)` = x2 + xy − y2 


Choose the correct alternative:

Solution of the equation `x("d"y)/("d"x)` = y log y is


Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.


Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×