मराठी

Solve the Following Differential Equation: Cosec X Log Y D Y D X + X 2 Y 2 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]

बेरीज

उत्तर

We have,

\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]
\[ \Rightarrow \text{ cosec }x \log y \frac{dy}{dx} = - x^2 y^2 \]
\[ \Rightarrow \frac{1}{y^2}\log y dy = - \frac{x^2}{\text{ cosec }x}dx\]
\[ \Rightarrow \frac{1}{y^2}\log y dy = - x^2 \sin x dx\]
\[ \Rightarrow \int\frac{1}{y^2}\log y dy = - \int x^2 \sin x dx\]
\[\Rightarrow - \frac{\log y}{y} + \int\frac{1}{y} \times \frac{1}{y} = - \left[ - x^2 \cos x + \int2x\cos x dx \right] + C\]
\[ \Rightarrow - \frac{\log y}{y} - \frac{1}{y} = - \left[ - x^2 \cos x + 2x\sin x - 2\int\sin x dx \right] + C\]
\[ \Rightarrow - \left( \frac{1 + \log y}{y} \right) = - \left[ - x^2 \cos x + 2x\sin x + 2\cos x dx \right] + C\]
\[ \Rightarrow - \left( \frac{1 + \log y}{y} \right) - x^2 \cos x + 2\left( x\sin x + \cos x \right) = C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.07 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.07 | Q 37.2 | पृष्ठ ५५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Show that y = AeBx is a solution of the differential equation

\[\frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2\]

Verify that y = cx + 2c2 is a solution of the differential equation 

\[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0\].

Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]

Function y = log x


\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]

\[\frac{dy}{dx} = x \log x\]

\[x\frac{dy}{dx} + 1 = 0 ; y \left( - 1 \right) = 0\]

\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]

\[\frac{dy}{dx} = \frac{1 - \cos 2y}{1 + \cos 2y}\]

x cos y dy = (xex log x + ex) dx


\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

tan y dx + sec2 y tan x dy = 0


tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y) 

 


y (1 + ex) dy = (y + 1) ex dx


\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[\frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]

Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.


If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).


Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

(x2 − y2) dx − 2xy dy = 0


Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]


Solve the following initial value problem:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]


A population grows at the rate of 5% per year. How long does it take for the population to double?


The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.


The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is


Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.


Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.


For each of the following differential equations find the particular solution.

`y (1 + logx)dx/dy - x log x = 0`,

when x=e, y = e2.


Solve the following differential equation.

y2 dx + (xy + x2 ) dy = 0


The solution of `dy/ dx` = 1 is ______


x2y dx – (x3 + y3) dy = 0


y dx – x dy + log x dx = 0


Solve the following differential equation

`x^2  ("d"y)/("d"x)` = x2 + xy − y2 


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


Solve the differential equation

`y (dy)/(dx) + x` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×