मराठी

Cos 2 ( X − 2 Y ) = 1 − 2 D Y D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]
बेरीज

उत्तर

We have, 

\[ \cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

\[ \Rightarrow 2\frac{dy}{dx} = 1 - \cos^2 \left( x - 2y \right)\]

\[\text{Let }x - 2y = v\]

\[ \Rightarrow 1 - 2\frac{dy}{dx} = \frac{dv}{dx}\]

\[ \Rightarrow 2\frac{dy}{dx} = 1 - \frac{dv}{dx}\]

\[ \therefore 1 - \frac{dv}{dx} = 1 - \cos^2 v\]

\[ \Rightarrow \frac{dv}{dx} = \cos^2 v\]

\[ \Rightarrow \sec^2 v dv = dx\]

Integrating both sides, we get

\[\int \sec^2 v dv = \int dx\]

\[ \Rightarrow \tan v = x - C\]

\[ \Rightarrow \tan\left( x - 2y \right) = x - C\]

\[ \Rightarrow x = \tan\left( x - 2y \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.08 [पृष्ठ ६६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.08 | Q 6 | पृष्ठ ६६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Prove that:

`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`


If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega +  b omega^2) =  omega^2`


\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

\[x^2 \left( \frac{d^2 y}{d x^2} \right)^3 + y \left( \frac{dy}{dx} \right)^4 + y^4 = 0\]

Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]


Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]

 


\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

\[\frac{dy}{dx} = \tan^{- 1} x\]


\[x\frac{dy}{dx} + y = y^2\]

\[x\frac{dy}{dx} + \cot y = 0\]

\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]

\[x\sqrt{1 - y^2} dx + y\sqrt{1 - x^2} dy = 0\]

\[xy\frac{dy}{dx} = y + 2, y\left( 2 \right) = 0\]

\[\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1\]

Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.


\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

\[\frac{dy}{dx} = \left( x + y \right)^2\]

(x + 2y) dx − (2x − y) dy = 0


Solve the following initial value problem:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]


A population grows at the rate of 5% per year. How long does it take for the population to double?


Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.


Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\]  are rectangular hyperbola.


The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is


The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting


The price of six different commodities for years 2009 and year 2011 are as follows: 

Commodities A B C D E F

Price in 2009 (₹)

35 80 25 30 80 x
Price in 2011 (₹) 50 y 45 70 120 105

The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.


Choose the correct option from the given alternatives:

The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = xn `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0`

Determine the order and degree of the following differential equations.

Solution D.E
y = aex + be−x `(d^2y)/dx^2= 1`

Form the differential equation from the relation x2 + 4y2 = 4b2


Solve the following differential equation.

`y^3 - dy/dx = x dy/dx`


For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


`xy dy/dx  = x^2 + 2y^2`


y dx – x dy + log x dx = 0


Select and write the correct alternative from the given option for the question 

Differential equation of the function c + 4yx = 0 is


A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution


The function y = ex is solution  ______ of differential equation


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×