मराठी

( X + 2 ) D Y D X = X 2 + 3 X + 7 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]
बेरीज

उत्तर

We have, 
\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]
\[ \Rightarrow \frac{dy}{dx} = \frac{x^2 + 3x + 7}{x + 2}\]
\[ \Rightarrow dy = \left( \frac{x^2 + 3x + 7}{x + 2} \right)dx\]
Integrating both sides, we get
\[\int dy = \int\left( \frac{x^2 + 3x + 7}{x + 2} \right)dx\]
\[ \Rightarrow \int dy = \int\left( \frac{x^2 + 3x + 2 + 5}{x + 2} \right)dx\]
\[ \Rightarrow \int dy = \int\left[ \frac{\left( x + 2 \right)\left( x + 1 \right) + 5}{x + 2} \right]dx\]
\[ \Rightarrow \int dy = \int\left( x + 1 + \frac{5}{x + 2} \right)dx\]
\[ \Rightarrow y = \frac{x^2}{2} + x + 5 \log\left| x + 2 \right| + C\]
\[\text{ So, } y = \frac{x^2}{2} + x + 5 \log\left| x + 2 \right| +\text{C is defined for all } x \in R\text{ except }x = - 2 . \]
\[\text{Hence, }y = \frac{x^2}{2} + x + 5 \log\left| x + 2 \right| + \text{C, where }x \in R - \left\{ 2 \right\},\text{ is the solution to the given differential equation.}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.05 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.05 | Q 6 | पृष्ठ ३४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Prove that:

`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`


\[\frac{d^3 x}{d t^3} + \frac{d^2 x}{d t^2} + \left( \frac{dx}{dt} \right)^2 = e^t\]

\[\left( \frac{dy}{dx} \right)^2 + \frac{1}{dy/dx} = 2\]

\[x + \left( \frac{dy}{dx} \right) = \sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]

Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]


Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x


\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]

\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]

\[\frac{dy}{dx} = x^5 \tan^{- 1} \left( x^3 \right)\]

\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

(1 + x2) dy = xy dx


\[x\frac{dy}{dx} + \cot y = 0\]

\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

(1 − x2) dy + xy dx = xy2 dx


dy + (x + 1) (y + 1) dx = 0


\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

\[\frac{dr}{dt} = - rt, r\left( 0 \right) = r_0\]

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

\[x\frac{dy}{dx} = x + y\]

\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

(y2 − 2xy) dx = (x2 − 2xy) dy


\[\left[ x\sqrt{x^2 + y^2} - y^2 \right] dx + xy\ dy = 0\]

Solve the following initial value problem:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]


Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]


A population grows at the rate of 5% per year. How long does it take for the population to double?


In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?


Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.


The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.


Define a differential equation.


The price of six different commodities for years 2009 and year 2011 are as follows: 

Commodities A B C D E F

Price in 2009 (₹)

35 80 25 30 80 x
Price in 2011 (₹) 50 y 45 70 120 105

The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = xn `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0`

Determine the order and degree of the following differential equations.

Solution D.E.
ax2 + by2 = 5 `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx`

Solve the following differential equation.

`dy/dx = x^2 y + y`


Solve the following differential equation.

`y^3 - dy/dx = x dy/dx`


Select and write the correct alternative from the given option for the question 

Differential equation of the function c + 4yx = 0 is


Solve the differential equation `("d"y)/("d"x) + y` = e−x 


Solve the following differential equation

`y log y ("d"x)/("d"y) + x` = log y


Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×