Advertisements
Advertisements
प्रश्न
Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x
उत्तर
We have,
\[y = e^x + e^{2x}.............(1)\]
Differentiating both sides of (1) with respect to x, we get
\[\frac{dy}{dx} = e^x + 2 e^{2x}.............(2)\]
Differentiating both sides of (2) with respect to x, we get
\[\frac{d^2 y}{d x^2} = e^x + 4 e^{2x} \]
\[ \Rightarrow \frac{d^2 y}{d x^2} = 3\left( e^x + 2 e^{2x} \right) - 2\left( e^x + e^{2x} \right)\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = 3\frac{dy}{dx} - 2y ..........\left[\text{Using (1) and (2)}\right]\]
\[ \Rightarrow \frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0\]
\[\Rightarrow \frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0\]
It is the given differential equation.
Therefore, y = ex + e2x satisfies the given differential equation.
Also, when \[x = 0; y = e^0 + e^0 = 1 + 1,\text{ i.e. }y(0) = 2\]
And, when \[x = 0; y' = e^0 + 2 e^0 = 1 + 2,\text{ i.e. }y'(0) = 3\]
Hence, `y = e^x + e^(2x)` is the solution to the given initial value problem.
Notes
In the question instead of y(0) = 1, it should have been y(0) = 2
APPEARS IN
संबंधित प्रश्न
Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} + y = y^2\]
|
\[y = \frac{a}{x + a}\]
|
Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + e−x
x cos y dy = (xex log x + ex) dx
Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]
(x + y) (dx − dy) = dx + dy
3x2 dy = (3xy + y2) dx
Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]
Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]
The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.
Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?
Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\] and tangent at any point of which makes an angle tan−1 \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.
Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\] are rectangular hyperbola.
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is
The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is
Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
Solve the differential equation:
`"x"("dy")/("dx")+"y"=3"x"^2-2`
In each of the following examples, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = ex | `dy/ dx= y` |
Solve the following differential equation.
`xy dy/dx = x^2 + 2y^2`
Solve the following differential equation y log y = `(log y - x) ("d"y)/("d"x)`
Solve the following differential equation
`x^2 ("d"y)/("d"x)` = x2 + xy − y2
Solve the following differential equation
`y log y ("d"x)/("d"y) + x` = log y
Solve: ydx – xdy = x2ydx.
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is
There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?