मराठी

Differential Equation D 2 Y D X 2 − 3 D Y D X + 2 Y = 0 , Y ( 0 ) = 1 , Y ′ ( 0 ) = 3 Function Y = Ex + E2x - Mathematics

Advertisements
Advertisements

प्रश्न

Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x

बेरीज

उत्तर

We have,

\[y = e^x + e^{2x}.............(1)\]

Differentiating both sides of (1) with respect to x, we get

\[\frac{dy}{dx} = e^x + 2 e^{2x}.............(2)\]

Differentiating both sides of (2) with respect to x, we get 
\[\frac{d^2 y}{d x^2} = e^x + 4 e^{2x} \]
\[ \Rightarrow \frac{d^2 y}{d x^2} = 3\left( e^x + 2 e^{2x} \right) - 2\left( e^x + e^{2x} \right)\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = 3\frac{dy}{dx} - 2y ..........\left[\text{Using (1) and (2)}\right]\]

\[ \Rightarrow \frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0\]

\[\Rightarrow \frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0\]

It is the given differential equation.

Therefore, y = ex + e2x satisfies the given differential equation.

Also, when \[x = 0; y = e^0 + e^0 = 1 + 1,\text{ i.e. }y(0) = 2\]

And, when \[x = 0; y' = e^0 + 2 e^0 = 1 + 2,\text{ i.e. }y'(0) = 3\]
Hence, `y = e^x + e^(2x)` is the solution to the given initial value problem.

shaalaa.com

Notes

In the question instead of y(0) = 1, it should have been y(0) = 2

  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.04 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.04 | Q 8 | पृष्ठ २८

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[\frac{d^3 x}{d t^3} + \frac{d^2 x}{d t^2} + \left( \frac{dx}{dt} \right)^2 = e^t\]

\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

\[x + \left( \frac{dy}{dx} \right) = \sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]

Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} + y = y^2\]
\[y = \frac{a}{x + a}\]

Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + ex


\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

\[\frac{dy}{dx} = \frac{1 + y^2}{y^3}\]

x cos y dy = (xex log x + ex) dx


\[\sqrt{1 + x^2} dy + \sqrt{1 + y^2} dx = 0\]

\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

\[\frac{dr}{dt} = - rt, r\left( 0 \right) = r_0\]

Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]


(x + y) (dx − dy) = dx + dy


3x2 dy = (3xy + y2) dx


Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]


\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]


The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.


Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?


Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\]  are rectangular hyperbola.


Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.


The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is


The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is


Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


Solve the differential equation:

`"x"("dy")/("dx")+"y"=3"x"^2-2`


In each of the following examples, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = ex  `dy/ dx= y`

Solve the following differential equation.

`xy  dy/dx = x^2 + 2y^2`


Solve the following differential equation y log y = `(log  y - x) ("d"y)/("d"x)`


Solve the following differential equation

`x^2  ("d"y)/("d"x)` = x2 + xy − y2 


Solve the following differential equation

`y log y ("d"x)/("d"y) + x` = log y


Solve: ydx – xdy = x2ydx.


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×