मराठी

The Decay Rate of Radium at Any Time T is Proportional to Its Mass at that Time. Find the Time When the Mass Will Be Halved of Its Initial Mass. - Mathematics

Advertisements
Advertisements

प्रश्न

The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.

बेरीज

उत्तर

Let the initial amount of radium be N and the amount of radium present at any time t be P.
Given:- \[\frac{dP}{dt}\alpha P\]
\[\Rightarrow \frac{dP}{dt} = - aP,\text{ where }a > 0\]
\[ \Rightarrow \frac{dP}{P} = - adt\]
Integrating both sides, we get
\[ \Rightarrow \log\left| P \right| = -\text{ at }+ C . . . . . \left( 1 \right)\]
Now,
\[P = N\text{ at }t = 0\]
\[\text{ Putting }P = N\text{ and }t = 0\text{ in }\left( 1 \right),\text{ we get }\]
\[\log\left| N \right| = C\]
\[\text{ Putting }C = \log\left| N \right|\text{ in }\left( 1 \right), \text{ we get }\]
\[\log\left| P \right| = - \text{ at }+ \log\left| N \right|\]
\[ \Rightarrow \log\left| \frac{N}{P} \right| =\text{ at }\]
According to the question, 
\[\log\left| \frac{N}{\frac{N}{2}} \right| =\text{ at }\]
\[ \Rightarrow \log\left| 2 \right| = \text{ at }\]
\[ \Rightarrow t = \frac{1}{a}\log\left| 2 \right|\]
Here, a is the constant of proportionality .

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.11 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.11 | Q 11 | पृष्ठ १३४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.


\[\frac{dy}{dx} = \tan^{- 1} x\]


(ey + 1) cos x dx + ey sin x dy = 0


\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

\[\cos x \cos y\frac{dy}{dx} = - \sin x \sin y\]

(y + xy) dx + (x − xy2) dy = 0


Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]

 


\[2x\frac{dy}{dx} = 5y, y\left( 1 \right) = 1\]

Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.


\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

\[x^2 \frac{dy}{dx} = x^2 - 2 y^2 + xy\]

Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]


Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]


A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.


The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.


Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\]  = x (x + 1) and passing through (1, 0).


Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.


The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.


Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.


Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.


Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


The differential equation satisfied by ax2 + by2 = 1 is


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(a^2-x^2)`              `x+y(dy/dx)=0`


Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


Choose the correct option from the given alternatives:

The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of


Solve the following differential equation.

y2 dx + (xy + x2 ) dy = 0


Solve the following differential equation.

`dy/dx + y = e ^-x`


The solution of `dy/dx + x^2/y^2 = 0` is ______


 `dy/dx = log x`


Solve the following differential equation

`x^2  ("d"y)/("d"x)` = x2 + xy − y2 


Choose the correct alternative:

Solution of the equation `x("d"y)/("d"x)` = y log y is


Solve the differential equation `"dy"/"dx" + 2xy` = y


Solve: ydx – xdy = x2ydx.


A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×