मराठी

In a Simple Circuit of Resistance R, Self Inductance L and Voltage E, the Current I at Any Time T is Given by L D I D T + R I = E. - Mathematics

Advertisements
Advertisements

प्रश्न

In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]

बेरीज

उत्तर

We have, 
\[L\frac{di}{dt} + Ri = E\]
\[ \Rightarrow \frac{di}{dt} + \frac{R}{L}i = \frac{E}{L} . . . . . \left( 1 \right)\]
\[ \therefore I . F . = e^{\int\frac{R}{L} dt} \]
\[ = e^{\frac{R}{L}t} \]
\[\text{ Multiplying both sides of (1) by }I . F . = e^{\frac{R}{L}t} , \text{ we get }\]
\[ e^{\frac{R}{L}t} \left( \frac{di}{dt} + \frac{R}{L}i \right) = e^{\frac{R}{L}t} \times \frac{E}{L}\]
\[ \Rightarrow e^{\frac{R}{L}t} \frac{di}{dt} + e^{\frac{R}{L}t} \frac{R}{L}i = e^{\frac{R}{L}t} \times \frac{E}{L}\]
Integrating both sides with respect to t, we get
\[ e^{\frac{R}{L}t} i = \frac{E}{L}\int e^{\frac{R}{L}t} dt + C\]
\[ \Rightarrow e^{\frac{R}{L}t} i = \frac{E}{L} \times \frac{L}{R} e^{\frac{R}{L}t} + C\]
\[ \Rightarrow e^{\frac{R}{L}t} i = \frac{E}{R} e^{\frac{R}{L}t} + C . . . . . . . . . . \left( 2 \right)\]
Now,
\[i = 0\text{ at }t = 0\]
\[ \therefore e^0 \times 0 = \frac{E}{R} e^0 + C\]
\[ \Rightarrow C = - \frac{E}{R}\]
\[\text{Putting the value of C in }\left( 2 \right),\text{ we get }\]
\[ e^{\frac{R}{L}t} i = \frac{E}{R} e^{\frac{R}{L}t} - \frac{E}{R}\]
\[ \Rightarrow i = \frac{E}{R} - \frac{E}{R} e^{- \frac{R}{L}t} \]
\[ \Rightarrow i = \frac{E}{R}\left( 1 - e^{- \frac{R}{L}t} \right)\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.11 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.11 | Q 10 | पृष्ठ १३४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]

 


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x^3 \frac{d^2 y}{d x^2} = 1\]
\[y = ax + b + \frac{1}{2x}\]

\[\sqrt{1 - x^4} dy = x\ dx\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]

\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]

\[5\frac{dy}{dx} = e^x y^4\]

\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

\[\sqrt{1 + x^2} dy + \sqrt{1 + y^2} dx = 0\]

tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y) 

 


Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]

 


Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]

 


Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

\[2x\frac{dy}{dx} = 5y, y\left( 1 \right) = 1\]

Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]


\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

\[\frac{dy}{dx} = \frac{y - x}{y + x}\]

Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]


Solve the following initial value problem:-

\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]


Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).


The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).


The differential equation satisfied by ax2 + by2 = 1 is


Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.


Find the differential equation whose general solution is

x3 + y3 = 35ax.


Solve the following differential equation.

`dy/dx = x^2 y + y`


Solve the following differential equation.

`dy/dx + y = e ^-x`


Solve the following differential equation.

`dy/dx + 2xy = x`


Solve the following differential equation.

`(x + a) dy/dx = – y + a`


Choose the correct alternative.

The differential equation of y = `k_1 + k_2/x` is


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


State whether the following is True or False:

The integrating factor of the differential equation `dy/dx - y = x` is e-x


State whether the following is True or False:

The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.


Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.


Solve the differential equation

`x + y dy/dx` = x2 + y2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×