Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{\cos\left( x - y \right)}\]
Putting x - y = v
\[ \Rightarrow 1 - \frac{dy}{dx} = \frac{dv}{dx}\]
\[ \Rightarrow \frac{dy}{dx} = 1 - \frac{dv}{dx}\]
\[ \therefore 1 - \frac{dv}{dx} = \frac{1}{\cos v}\]
\[ \Rightarrow \frac{dv}{dx} = 1 - \frac{1}{\cos v}\]
\[ \Rightarrow \frac{dv}{dx} = \frac{\cos v - 1}{\cos v}\]
\[ \Rightarrow \frac{\cos v}{\cos v - 1}dv = dx\]
Integrating both sides, we get
\[\int\frac{\cos v}{\cos v - 1}dv = \int dx\]
\[ \Rightarrow - \int\frac{\cos v\left( 1 + \cos v \right)}{1 - \cos^2 v}dv = \int dx\]
\[ \Rightarrow - \int\frac{\cos v\left( 1 + \cos v \right)}{\sin^2 v}dv = \int dx\]
\[ \Rightarrow - \int\left( \cot v\ cosec\ v + \cot^2 v \right)dv = \int dx\]
\[ \Rightarrow - \int\left( \cot v\ cosec\ v + {cosec}^2 v - 1 \right)dv = \int dx\]
\[ \Rightarrow - \left( - cosec\ v - \cot v - v \right) = x + C\]
\[ \Rightarrow cosec \left( x - y \right) + \cot \left( x - y \right) + x - y = x + C\]
\[ \Rightarrow cosec \left( x - y \right) + \cot \left( x - y \right) - y = C\]
\[ \Rightarrow \frac{1 + \cos \left( x - y \right)}{\sin \left( x - y \right)} - y = C\]
\[ \Rightarrow \cot\left( \frac{x - y}{2} \right) = y + C\]
APPEARS IN
संबंधित प्रश्न
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].
Verify that y = cx + 2c2 is a solution of the differential equation
Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]
Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex
x cos y dy = (xex log x + ex) dx
(1 − x2) dy + xy dx = xy2 dx
Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.
(x + 2y) dx − (2x − y) dy = 0
The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.
Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\] at any point (x, y) on it.
Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.
Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.
Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.
The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is
The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]
Solve the differential equation:
`"x"("dy")/("dx")+"y"=3"x"^2-2`
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = xn | `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0` |
Determine the order and degree of the following differential equations.
Solution | D.E. |
y = 1 − logx | `x^2(d^2y)/dx^2 = 1` |
Form the differential equation from the relation x2 + 4y2 = 4b2
Solve the following differential equation.
`(x + y) dy/dx = 1`
The solution of `dy/dx + x^2/y^2 = 0` is ______
Choose the correct alternative.
The solution of `x dy/dx = y` log y is
y dx – x dy + log x dx = 0
Solve the following differential equation y log y = `(log y - x) ("d"y)/("d"x)`
Solve the differential equation
`x + y dy/dx` = x2 + y2