Advertisements
Advertisements
प्रश्न
Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.
उत्तर
According to the question,
\[\frac{dy}{dx} = x + xy\]
\[\Rightarrow \frac{dy}{dx} - xy = x\]
\[\text{ Comparing with }\frac{dy}{dx} + Py = Q, \text{ we get }\]
\[P = - x\]
\[Q = x\]
Now,
\[I . F . = e^{- \int xdx} = e^{- \frac{x^2}{2}} \]
So, the solution is given by
\[y \times I . F . = \int Q \times I . F . dx + C\]
\[ \Rightarrow y e^{- \frac{x^2}{2}} = \int x e^{- \frac{x^2}{2}} dx + C\]
\[ \Rightarrow y e^{- \frac{x^2}{2}} = I + C\]
Now,
\[I = \int x e^{- \frac{x^2}{2}} dx\]
\[\text{ Putting }\frac{- x^2}{2} = t,\text{ we get }\]
\[ - xdx = dt\]
\[ \therefore I = - \int e^t dt\]
\[ \Rightarrow I = - e^t \]
\[ \Rightarrow I = - e^\frac{- x^2}{2} \]
\[ \therefore y e^{- \frac{x^2}{2}} = - e^\frac{- x^2}{2} + C \]
\[\text{ Since the curve passes throught the point }\left( 0, 1 \right),\text{ it satisfies the equation of the curve . }\]
\[ \Rightarrow 1 e^0 = - e^0 + C\]
\[ \Rightarrow C = 2\]
Putting the value of C in the equation of the curve, we get
\[y e^{- \frac{x^2}{2}} = - e^\frac{- x^2}{2} + 2\]
\[ \Rightarrow y = - 1 + 2 e^\frac{x^2}{2}\]
APPEARS IN
संबंधित प्रश्न
Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.
(y + xy) dx + (x − xy2) dy = 0
dy + (x + 1) (y + 1) dx = 0
Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]
Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\]
\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]
3x2 dy = (3xy + y2) dx
Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]
In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?
A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.
Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
Choose the correct option from the given alternatives:
The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is
Find the differential equation whose general solution is
x3 + y3 = 35ax.
Solve the following differential equation.
y2 dx + (xy + x2 ) dy = 0
Solve the following differential equation.
`dy/dx + y = e ^-x`
Solve the following differential equation.
`dy/dx + y` = 3
Solve the differential equation:
dr = a r dθ − θ dr
Solve the following differential equation y log y = `(log y - x) ("d"y)/("d"x)`
Solve the following differential equation y2dx + (xy + x2) dy = 0
Choose the correct alternative:
Solution of the equation `x("d"y)/("d"x)` = y log y is
A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution
Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.
Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.