मराठी

In a Culture, the Bacteria Count is 100000. the Number is Increased by 10% in 2 Hours. in How Many Hours Will the Count Reach 200000, If the Rate of Growth of Bacteria is Proportiona - Mathematics

Advertisements
Advertisements

प्रश्न

In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?

बेरीज

उत्तर

Let the bacteria count at any time t be N. 

\[\text{ Given:- }\hspace{0.167em} \frac{dN}{dt}\alpha N\]

\[ \Rightarrow \frac{dN}{dt} = \lambda N\]

\[ \Rightarrow \frac{1}{N}dN = \lambda dt\]

Integrating both sides, we get

\[\int\frac{1}{N}dN = \int\lambda dt\]

\[ \Rightarrow \log N = \lambda t + \log C . . . . . . . . . (1)\]

\[\text{ Initially when }t = 0,\text{ then }N = 100000 .............\left(\text{Given }\right)\]

\[ \therefore \log 100000 = 0 + \log C\]

\[ \Rightarrow \log C = \log 100000\]

After 2 hours number increased by 10 % 

Therefore, increased number = 100000 1 + 10 % = 110000

\[\text{ Given: }t = 2, N = 110000\]

\[\text{ Putting }t = 2, N = 110000\text{ in }(1),\text{ we get }\]

\[\log 110000 = 2\lambda + \log 100000\]

\[ \Rightarrow \frac{1}{2}\log \frac{11}{10} = \lambda\]

\[\text{Substituting the values of }\log C\text{ and }\lambda\text{ in }(1),\text{ we get }\]

\[\log N = \frac{t}{2}\log \left( \frac{11}{10} \right) + \log 100000 . . . . . . . (2)\]

Now, 

Let t = T when N = 200000

Substituting these values in (2), we get 

\[\log 200000 = \frac{T}{2}\log \left( \frac{11}{10} \right) + \log 100000\]

\[ \Rightarrow \log 2 = \frac{T}{2}\log \frac{11}{10}\]

\[ \Rightarrow T = 2\frac{\log 2}{\log\frac{11}{10}}\]

\[ \therefore\text{ The count will reach 200000 in }2\frac{\log 2}{\log\frac{11}{10}}\text{ hours .}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.11 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.11 | Q 4 | पृष्ठ १३४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[\frac{d^3 x}{d t^3} + \frac{d^2 x}{d t^2} + \left( \frac{dx}{dt} \right)^2 = e^t\]

Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]

\[\sqrt{1 - x^4} dy = x\ dx\]

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y\left( 2 \right) = 0\]

(y2 + 1) dx − (x2 + 1) dy = 0


\[\frac{dr}{dt} = - rt, r\left( 0 \right) = r_0\]

Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\] 

 


(x + y) (dx − dy) = dx + dy


\[\left( x + y + 1 \right)\frac{dy}{dx} = 1\]

\[x\frac{dy}{dx} = x + y\]

(x2 − y2) dx − 2xy dy = 0


\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

Solve the following initial value problem:-

\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]


The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.


The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.


Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\]  = x (x + 1) and passing through (1, 0).


Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


The differential equation satisfied by ax2 + by2 = 1 is


Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]


Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .


If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`


Choose the correct option from the given alternatives:

The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is


For each of the following differential equations find the particular solution.

`y (1 + logx)dx/dy - x log x = 0`,

when x=e, y = e2.


Solve the following differential equation.

x2y dx − (x3 + y3 ) dy = 0


Solve the following differential equation.

`dy /dx +(x-2 y)/ (2x- y)= 0`


Solve the following differential equation.

`xy  dy/dx = x^2 + 2y^2`


Solve the following differential equation.

dr + (2r)dθ= 8dθ


The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.


The solution of `dy/ dx` = 1 is ______


The solution of `dy/dx + x^2/y^2 = 0` is ______


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0


Solve the differential equation xdx + 2ydy = 0


Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0


Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)

Solution: `("d"y)/("d"x)` = cos(x + y)    ......(1)

Put `square`

∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`

∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`

∴ (1) becomes `"dv"/("d"x) - 1` = cos v

∴ `"dv"/("d"x)` = 1 + cos v

∴ `square` dv = dx

Integrating, we get

`int 1/(1 + cos "v")  "d"v = int  "d"x`

∴ `int 1/(2cos^2 ("v"/2))  "dv" = int  "d"x`

∴ `1/2 int square  "dv" = int  "d"x`

∴ `1/2* (tan("v"/2))/(1/2)` = x + c

∴ `square` = x + c


Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


If `y = log_2 log_2(x)` then `(dy)/(dx)` =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×