मराठी

D Y D X − X Sin 2 X = 1 X Log X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]
बेरीज

उत्तर

We have, 
\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x\log x}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{x\log x} + x \sin^2 x\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{x\log x} + \frac{x}{2}\left( 1 - \cos 2x \right)\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{x\log x} + \frac{x}{2} - \frac{x}{2}\cos 2x\]
\[ \Rightarrow dy = \left[ \frac{1}{x\log x} + \frac{x}{2} - \frac{x}{2}\cos 2x \right]dx\]
Integrating both sides, we get
\[\int dy = \int\left[ \frac{1}{x\log x} + \frac{x}{2} - \frac{x}{2}\cos 2x \right]dx\]
\[ \Rightarrow y = \int\frac{1}{x\log x}dx + \frac{1}{2}\int x dx - \frac{1}{2}\int\left( x \cos 2x \right)dx\]
\[ \Rightarrow y = \log\left| \log x \right| + \frac{1}{2} \times \frac{x^2}{2} - \frac{1}{2}\int x_I \times \cos_{II} 2x dx \]
\[ \Rightarrow y = \log\left| \log x \right| + \frac{x^2}{4} - \frac{x}{2}\int\left( \cos 2x \right)dx + \frac{1}{2}\int\left[ \frac{d}{dx}\left( x \right)\int\left( \cos 2x \right) dx \right]dx\]
\[ \Rightarrow y = \log\left| \log x \right| + \frac{x^2}{4} - \frac{x\sin 2x}{4} - \frac{\cos 2x}{8} + C\]
\[\text{ Hence, }y = \log\left| \log x \right| + \frac{x^2}{4} - \frac{x\sin 2x}{4} - \frac{\cos 2x}{8} +\text{ C is the solution to the given differential equation.}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.05 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.05 | Q 12 | पृष्ठ ३४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Prove that:

`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`


\[\frac{d^3 x}{d t^3} + \frac{d^2 x}{d t^2} + \left( \frac{dx}{dt} \right)^2 = e^t\]

Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\]  is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]


Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x


\[\sin\left( \frac{dy}{dx} \right) = k ; y\left( 0 \right) = 1\]

C' (x) = 2 + 0.15 x ; C(0) = 100


\[\frac{dy}{dx} = \frac{1 - \cos 2y}{1 + \cos 2y}\]

x cos2 y  dx = y cos2 x dy


\[x\frac{dy}{dx} + \cot y = 0\]

\[\sqrt{1 + x^2 + y^2 + x^2 y^2} + xy\frac{dy}{dx} = 0\]

tan y dx + sec2 y tan x dy = 0


Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.


In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.


\[xy\frac{dy}{dx} = x^2 - y^2\]

\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]

 

Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]


The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?


Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.


The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]


What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?


Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .


Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0


Determine the order and degree of the following differential equations.

Solution D.E.
ax2 + by2 = 5 `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx`

For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


Solve the following differential equation.

y2 dx + (xy + x2 ) dy = 0


Solve the following differential equation.

`dy /dx +(x-2 y)/ (2x- y)= 0`


Solve the following differential equation.

`x^2 dy/dx = x^2 +xy - y^2`


The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.


Choose the correct alternative.

Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in


A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.


Select and write the correct alternative from the given option for the question

The differential equation of y = Ae5x + Be–5x is


Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0

y = `a + b/x`

`(dy)/(dx) = square`

`(d^2y)/(dx^2) = square`

Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`

= `x square + 2 square`

= `square`

Hence y = `a + b/x` is solution of `square`


Find the particular solution of the following differential equation

`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.

Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x

∴ `1/"e"^(2y)  "d"y` = cos x dx

Integrating, we get

`int square  "d"y` = cos x dx

∴ `("e"^(-2y))/(-2)` = sin x + c1

∴ e–2y = – 2sin x – 2c1

∴ `square` = c, where c = – 2c

This is general solution.

When x = `pi/6`, y = 0, we have

`"e"^0 + 2sin  pi/6` = c

∴ c = `square`

∴ particular solution is `square`


Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×