Advertisements
Advertisements
Question
Solution
We have,
\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x\log x}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{x\log x} + x \sin^2 x\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{x\log x} + \frac{x}{2}\left( 1 - \cos 2x \right)\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{x\log x} + \frac{x}{2} - \frac{x}{2}\cos 2x\]
\[ \Rightarrow dy = \left[ \frac{1}{x\log x} + \frac{x}{2} - \frac{x}{2}\cos 2x \right]dx\]
Integrating both sides, we get
\[\int dy = \int\left[ \frac{1}{x\log x} + \frac{x}{2} - \frac{x}{2}\cos 2x \right]dx\]
\[ \Rightarrow y = \int\frac{1}{x\log x}dx + \frac{1}{2}\int x dx - \frac{1}{2}\int\left( x \cos 2x \right)dx\]
\[ \Rightarrow y = \log\left| \log x \right| + \frac{1}{2} \times \frac{x^2}{2} - \frac{1}{2}\int x_I \times \cos_{II} 2x dx \]
\[ \Rightarrow y = \log\left| \log x \right| + \frac{x^2}{4} - \frac{x}{2}\int\left( \cos 2x \right)dx + \frac{1}{2}\int\left[ \frac{d}{dx}\left( x \right)\int\left( \cos 2x \right) dx \right]dx\]
\[ \Rightarrow y = \log\left| \log x \right| + \frac{x^2}{4} - \frac{x\sin 2x}{4} - \frac{\cos 2x}{8} + C\]
\[\text{ Hence, }y = \log\left| \log x \right| + \frac{x^2}{4} - \frac{x\sin 2x}{4} - \frac{\cos 2x}{8} +\text{ C is the solution to the given differential equation.}\]
APPEARS IN
RELATED QUESTIONS
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x
(1 + x2) dy = xy dx
x cos y dy = (xex log x + ex) dx
Solve the following differential equation:
(xy2 + 2x) dx + (x2 y + 2y) dy = 0
Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]
x2 dy + y (x + y) dx = 0
Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]
Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.
Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\] at any point (x, y) on it.
At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is
Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = ex + 1 y'' − y' = 0
If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`
Solve the differential equation:
`"x"("dy")/("dx")+"y"=3"x"^2-2`
Choose the correct option from the given alternatives:
The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = xn | `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0` |
Solve the following differential equation.
`(dθ)/dt = − k (θ − θ_0)`
For the following differential equation find the particular solution.
`(x + 1) dy/dx − 1 = 2e^(−y)`,
when y = 0, x = 1
Solve the differential equation:
`e^(dy/dx) = x`
Solve:
(x + y) dy = a2 dx
Select and write the correct alternative from the given option for the question
The differential equation of y = Ae5x + Be–5x is
Select and write the correct alternative from the given option for the question
Differential equation of the function c + 4yx = 0 is
Solve the differential equation xdx + 2ydy = 0
Solve the following differential equation
sec2 x tan y dx + sec2 y tan x dy = 0
Solution: sec2 x tan y dx + sec2 y tan x dy = 0
∴ `(sec^2x)/tanx "d"x + square` = 0
Integrating, we get
`square + int (sec^2y)/tany "d"y` = log c
Each of these integral is of the type
`int ("f'"(x))/("f"(x)) "d"x` = log |f(x)| + log c
∴ the general solution is
`square + log |tan y|` = log c
∴ log |tan x . tan y| = log c
`square`
This is the general solution.
Solve the differential equation
`x + y dy/dx` = x2 + y2