Advertisements
Advertisements
Question
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
Solution
We have,
\[y = \pm \sqrt{a^2 - x^2}\]
\[ \Rightarrow y^2 = a^2 - x^2 . . . . . \left( 1 \right)\]
Given differential equation:
\[x + y\frac{dy}{dx} = 0\]
Differentiating both sides of (1) with respect to x, we get
\[2y \frac{dy}{dx} = - 2x\]
\[ \Rightarrow y \frac{dy}{dx} = - x\]
\[ \Rightarrow x + y \frac{dy}{dx} = 0\]
Hence, the given function is the solution to the given differential equation.
APPEARS IN
RELATED QUESTIONS
x cos y dy = (xex log x + ex) dx
(y2 + 1) dx − (x2 + 1) dy = 0
Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]
Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]
Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.
(x + 2y) dx − (2x − y) dy = 0
Solve the following initial value problem:-
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.
Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).
Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\] = x (x + 1) and passing through (1, 0).
The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
The differential equation satisfied by ax2 + by2 = 1 is
Solve the following differential equation.
`y^3 - dy/dx = x dy/dx`
Solve the following differential equation.
`x^2 dy/dx = x^2 +xy - y^2`
Solve the following differential equation.
`(x + a) dy/dx = – y + a`
Solve the following differential equation.
dr + (2r)dθ= 8dθ
Choose the correct alternative.
The solution of `x dy/dx = y` log y is
Choose the correct alternative.
The integrating factor of `dy/dx - y = e^x `is ex, then its solution is
Select and write the correct alternative from the given option for the question
Differential equation of the function c + 4yx = 0 is
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Choose the correct alternative:
Solution of the equation `x("d"y)/("d"x)` = y log y is
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0
y = `a + b/x`
`(dy)/(dx) = square`
`(d^2y)/(dx^2) = square`
Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`
= `x square + 2 square`
= `square`
Hence y = `a + b/x` is solution of `square`
The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.
Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.
Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]