Advertisements
Advertisements
Question
Solution
\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]
\[ \Rightarrow \frac{y}{y + 2}dy = \frac{x + 2}{x}dx\]
\[ \Rightarrow \frac{y + 2 - 2}{y + 2}dy = \frac{x + 2}{x}dx\]
\[ \Rightarrow \left( 1 - \frac{2}{y + 2} \right)dy = \left( 1 + \frac{2}{x} \right)dx\]
Integrating both sides, we get
\[\int\left( 1 - \frac{2}{y + 2} \right)dy = \int\left( 1 + \frac{2}{x} \right)dx\]
\[ \Rightarrow y - 2\log \left| y + 2 \right| = x + 2\log \left| x \right| + C . . . . . (1)\]
We know that at x = 1, y = - 1 .
Substituting the values of x and y in (1), we get
\[ - 1 - 2\log \left| 1 \right| = 1 + 2\log \left| 1 \right| + C\]
\[ \Rightarrow - 1 = 1 + C\]
\[ \Rightarrow C = - 2\]
Substituting the value of C in (1), we get
\[y - 2\log \left| y + 2 \right| = x + 2\log \left| x \right| - 2\]
\[\text{ Hence, }y - 2\log \left| y + 2 \right| = x + 2\log \left| x \right| - 2 \text{ is the required solution .} \]
APPEARS IN
RELATED QUESTIONS
Verify that y = cx + 2c2 is a solution of the differential equation
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} + y = y^2\]
|
\[y = \frac{a}{x + a}\]
|
(y2 + 1) dx − (x2 + 1) dy = 0
Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).
(x2 − y2) dx − 2xy dy = 0
\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]
Solve the following initial value problem:-
\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?
Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.
Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\] at any point (x, y) on it.
At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.
The solution of the differential equation y1 y3 = y22 is
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is
Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .
Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(a^2-x^2)` `x+y(dy/dx)=0`
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
Determine the order and degree of the following differential equations.
Solution | D.E. |
ax2 + by2 = 5 | `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx` |
Form the differential equation from the relation x2 + 4y2 = 4b2
For the following differential equation find the particular solution.
`dy/ dx = (4x + y + 1),
when y = 1, x = 0
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
Solve:
(x + y) dy = a2 dx
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Solve: `("d"y)/("d"x) + 2/xy` = x2
Choose the correct alternative:
Solution of the equation `x("d"y)/("d"x)` = y log y is
A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution
Solve the following differential equation
`y log y ("d"x)/("d"y) + x` = log y
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is
The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.