English

D Y D X = 1 + X 2 + Y 2 + X 2 Y 2 , Y ( 0 ) = 1 - Mathematics

Advertisements
Advertisements

Question

\[\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1\]

Solution

\[ \frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1\]
\[ \Rightarrow \frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]
\[ \Rightarrow \frac{dy}{\left( 1 + y^2 \right)} = \left( 1 + x^2 \right) dx\]
Integrating both sides, we get 
\[\int\frac{dy}{\left( 1 + y^2 \right)} = \int\left( 1 + x^2 \right) dx\]
\[ \Rightarrow \tan -^1 y = x + \frac{x^3}{3} + C . . . . . (1)\]
We know that at x = 0, y = 1 . 
Substituting the values of x and y in (1), we get
\[\frac{\pi}{4} = 0 + 0 + C\]
\[ \Rightarrow C = \frac{\pi}{4}\]
Substituting the value of C in (1), we get 
\[\tan -^1 y = x + \frac{x^3}{3} + \frac{\pi}{4}\]
\[\text{ Hence, }\tan -^1 y = x + \frac{x^3}{3} + \frac{\pi}{4}\text{ is the required solution .} \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.07 [Page 56]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.07 | Q 45.6 | Page 56

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Prove that:

`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`


Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x


(sin x + cos x) dy + (cos x − sin x) dx = 0


\[\left( x - 1 \right)\frac{dy}{dx} = 2 xy\]

\[x\frac{dy}{dx} + y = y^2\]

xy dy = (y − 1) (x + 1) dx


\[x\frac{dy}{dx} + \cot y = 0\]

\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]

Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


\[\frac{dr}{dt} = - rt, r\left( 0 \right) = r_0\]

Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.


The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.


In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


\[\left[ x\sqrt{x^2 + y^2} - y^2 \right] dx + xy\ dy = 0\]

The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\]  are rectangular hyperbola.


The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).


Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


y2 dx + (x2 − xy + y2) dy = 0


Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]


Solve the following differential equation.

`(dθ)/dt  = − k (θ − θ_0)`


Solve the following differential equation.

`(x + y) dy/dx = 1`


Solve the following differential equation.

`(x + a) dy/dx = – y + a`


The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.


A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.


State whether the following is True or False:

The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.


y2 dx + (xy + x2)dy = 0


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______


Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.


Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.


Solve the differential equation `"dy"/"dx" + 2xy` = y


Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]


There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?


The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:


Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×