Advertisements
Advertisements
प्रश्न
उत्तर
\[ \frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1\]
\[ \Rightarrow \frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]
\[ \Rightarrow \frac{dy}{\left( 1 + y^2 \right)} = \left( 1 + x^2 \right) dx\]
Integrating both sides, we get
\[\int\frac{dy}{\left( 1 + y^2 \right)} = \int\left( 1 + x^2 \right) dx\]
\[ \Rightarrow \tan -^1 y = x + \frac{x^3}{3} + C . . . . . (1)\]
We know that at x = 0, y = 1 .
Substituting the values of x and y in (1), we get
\[\frac{\pi}{4} = 0 + 0 + C\]
\[ \Rightarrow C = \frac{\pi}{4}\]
Substituting the value of C in (1), we get
\[\tan -^1 y = x + \frac{x^3}{3} + \frac{\pi}{4}\]
\[\text{ Hence, }\tan -^1 y = x + \frac{x^3}{3} + \frac{\pi}{4}\text{ is the required solution .} \]
APPEARS IN
संबंधित प्रश्न
If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega + b omega^2) = omega^2`
Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]
Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\] satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]
Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\]
(x + 2y) dx − (2x − y) dy = 0
Solve the following initial value problem:-
\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]
In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]
The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.
Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).
The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).
Define a differential equation.
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = ex + 1 y'' − y' = 0
Choose the correct option from the given alternatives:
The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = xn | `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0` |
Solve the following differential equation.
`xy dy/dx = x^2 + 2y^2`
Solve the following differential equation.
`(x + a) dy/dx = – y + a`
Solve the following differential equation.
dr + (2r)dθ= 8dθ
The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Select and write the correct alternative from the given option for the question
Differential equation of the function c + 4yx = 0 is
Choose the correct alternative:
General solution of `y - x ("d"y)/("d"x)` = 0 is
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______
Solve the following differential equation
`y log y ("d"x)/("d"y) + x` = log y
Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)
Solution: `("d"y)/("d"x)` = cos(x + y) ......(1)
Put `square`
∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`
∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`
∴ (1) becomes `"dv"/("d"x) - 1` = cos v
∴ `"dv"/("d"x)` = 1 + cos v
∴ `square` dv = dx
Integrating, we get
`int 1/(1 + cos "v") "d"v = int "d"x`
∴ `int 1/(2cos^2 ("v"/2)) "dv" = int "d"x`
∴ `1/2 int square "dv" = int "d"x`
∴ `1/2* (tan("v"/2))/(1/2)` = x + c
∴ `square` = x + c
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.
Solve: ydx – xdy = x2ydx.
The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is