मराठी

Solve: ydx – xdy = x2ydx. - Mathematics

Advertisements
Advertisements

प्रश्न

Solve: ydx – xdy = x2ydx.

बेरीज

उत्तर

Given equation is ydx – xdy = x2ydx.

⇒ ydx – x2y dx = xdy

⇒ y(1 – x2)dx = xdy

⇒ `((1 - x^2)/x)"d"x = "dy"/y`

⇒ `(1/x - x)"d"x = "dy"/y`

Integrating both sides we get

`int(1/x - x)"d"x = int "dy"/y`

⇒ `log x - x^2/2` = log y + log c

⇒ `log x - x^2/2` = log yc

⇒ log y – log c = `x^2/2`

⇒ `log x/(y"c") = x^2/2`

⇒ `x/(y"c") = "e"^(x^2/2)`

⇒ `(y"c")/x = "e"^((-x^2)/2`

⇒ yc = `x"e"^((-x^2)/2`

∴ y = `1/"c" * x"e"^((-x^2)/2`

⇒ y = `"k"x"e"^((-x^2)/2`  ......`[because "k" = 1/"c"]`

Hence, the required solution is y = `"k"x"e"^((-x^2)/2`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Equations - Exercise [पृष्ठ १९३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 9 Differential Equations
Exercise | Q 8 | पृष्ठ १९३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[y\frac{d^2 x}{d y^2} = y^2 + 1\]

Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].


Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex


Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex


\[\frac{dy}{dx} = \log x\]

\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]

C' (x) = 2 + 0.15 x ; C(0) = 100


\[x\frac{dy}{dx} + y = y^2\]

Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


\[\frac{dy}{dx} = \left( x + y \right)^2\]

Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]


The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.

 

Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of  radium to decompose?


The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.


Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting


Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.


Solve the following differential equation.

xdx + 2y dx = 0


State whether the following is True or False:

The integrating factor of the differential equation `dy/dx - y = x` is e-x


x2y dx – (x3 + y3) dy = 0


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×