Advertisements
Advertisements
प्रश्न
Solve: ydx – xdy = x2ydx.
उत्तर
Given equation is ydx – xdy = x2ydx.
⇒ ydx – x2y dx = xdy
⇒ y(1 – x2)dx = xdy
⇒ `((1 - x^2)/x)"d"x = "dy"/y`
⇒ `(1/x - x)"d"x = "dy"/y`
Integrating both sides we get
`int(1/x - x)"d"x = int "dy"/y`
⇒ `log x - x^2/2` = log y + log c
⇒ `log x - x^2/2` = log yc
⇒ log y – log c = `x^2/2`
⇒ `log x/(y"c") = x^2/2`
⇒ `x/(y"c") = "e"^(x^2/2)`
⇒ `(y"c")/x = "e"^((-x^2)/2`
⇒ yc = `x"e"^((-x^2)/2`
∴ y = `1/"c" * x"e"^((-x^2)/2`
⇒ y = `"k"x"e"^((-x^2)/2` ......`[because "k" = 1/"c"]`
Hence, the required solution is y = `"k"x"e"^((-x^2)/2`.
APPEARS IN
संबंधित प्रश्न
Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].
Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].
Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex
Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex
C' (x) = 2 + 0.15 x ; C(0) = 100
Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]
Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]
The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.
If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.
Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of radium to decompose?
The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution
The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting
Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.
Solve the following differential equation.
xdx + 2y dx = 0
State whether the following is True or False:
The integrating factor of the differential equation `dy/dx - y = x` is e-x
x2y dx – (x3 + y3) dy = 0
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is
The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of: