Advertisements
Advertisements
प्रश्न
The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution
पर्याय
y − x3 = 2cx
2y − x3 = cx
2y + x2 = 2cx
y + x2 = 2cx
उत्तर
2y − x3 = cx
We have,
\[x\frac{dy}{dx} - y = x^2\]
\[\Rightarrow \frac{dy}{dx} - \frac{1}{x}y = x^2 \]
\[\text{ Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get }\]
\[P = - \frac{1}{x} \]
\[Q = x^2 \]
Now,
\[I . F . = e^{- \int\frac{1}{x}dx} = e^{- \log\left| x \right|} \]
\[ = e^{log\left| \frac{1}{x} \right|} \]
\[ = \frac{1}{x}\]
\[y \times I . F = \int x^2 \times I . Fdx + C\]
\[ \Rightarrow y\frac{1}{x} = \int x^2 \times \frac{1}{x}dx + C\]
\[ \Rightarrow y\frac{1}{x} = \int xdx + C\]
\[ \Rightarrow y\frac{1}{x} = \frac{x^2}{2} + C\]
\[ \Rightarrow 2y - x^3 = Cx\]
APPEARS IN
संबंधित प्रश्न
Solve the equation for x: `sin^(-1) 5/x + sin^(-1) 12/x = pi/2, x != 0`
Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x
(sin x + cos x) dy + (cos x − sin x) dx = 0
y (1 + ex) dy = (y + 1) ex dx
In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).
Solve the following initial value problem:-
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).
Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\] = x (x + 1) and passing through (1, 0).
Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of radium to decompose?
Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
The price of six different commodities for years 2009 and year 2011 are as follows:
Commodities | A | B | C | D | E | F |
Price in 2009 (₹) |
35 | 80 | 25 | 30 | 80 | x |
Price in 2011 (₹) | 50 | y | 45 | 70 | 120 | 105 |
The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.
Choose the correct option from the given alternatives:
The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is
For each of the following differential equations find the particular solution.
(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0
Solve the following differential equation.
`x^2 dy/dx = x^2 +xy - y^2`
Solve the following differential equation.
`dy/dx + y = e ^-x`
The solution of `dy/dx + x^2/y^2 = 0` is ______
Solve
`dy/dx + 2/ x y = x^2`
x2y dx – (x3 + y3) dy = 0
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`
Choose the correct alternative:
Differential equation of the function c + 4yx = 0 is
Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.
Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.
The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0
A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is
`d/(dx)(tan^-1 (sqrt(1 + x^2) - 1)/x)` is equal to: