मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Solve dydx+2xy=x2 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve

`dy/dx + 2/ x y = x^2`

बेरीज

उत्तर

`dy/dx + 2/ x y = x^2`

The given equation is of the form

`dy/dx + py = Q`

`where, P = 2/x and Q = x^2`

∴ I.F. =`e^(int^(pdx) = e^(2int^(1/xdx) e = ^(2logx) = e^(logx^2) = x^2`

∴ Solution of the given equation is

`y(I.F.) = int Q(I.F.) dx + c_1`

`y(x^2) = int x^2 xx x^2 dx + c_1`

∴ `x ^2 y =  x^4 intdx + c_1`

∴ `x^2 y =  x^5/5 + c_1`

∴ 5x2 y = x5 + c   …[c = 5c1]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Differential Equation and Applications - Miscellaneous Exercise 8 [पृष्ठ १७३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 8 Differential Equation and Applications
Miscellaneous Exercise 8 | Q 4.08 | पृष्ठ १७३

संबंधित प्रश्‍न

Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\]  satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]


\[\frac{dy}{dx} = \log x\]

xy (y + 1) dy = (x2 + 1) dx


dy + (x + 1) (y + 1) dx = 0


Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


\[\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.


Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]


The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


y2 dx + (x2 − xy + y2) dy = 0


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
xy = log y + k y' (1 - xy) = y2

Solve the following differential equation.

`dy/dx + y` = 3


Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


Choose the correct alternative:

General solution of `y - x ("d"y)/("d"x)` = 0 is


Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0

y = `a + b/x`

`(dy)/(dx) = square`

`(d^2y)/(dx^2) = square`

Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`

= `x square + 2 square`

= `square`

Hence y = `a + b/x` is solution of `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×