Advertisements
Advertisements
प्रश्न
xy (y + 1) dy = (x2 + 1) dx
उत्तर
We have,
\[xy\left( y + 1 \right)dy = \left( x^2 + 1 \right)dx\]
\[ \Rightarrow \left\{ y\left( y + 1 \right) \right\}dy = \frac{x^2 + 1}{x}dx\]
\[ \Rightarrow \left( y^2 + y \right)dy = \left( x + \frac{1}{x} \right)dx\]
Integrating both sides, we get
\[\int\left( y^2 + y \right)dy = \int\left( x + \frac{1}{x} \right)dx\]
\[ \Rightarrow \int y^2 dy + \int y dy = \int x dx + \int\frac{1}{x}dx\]
\[ \Rightarrow \frac{y^3}{3} + \frac{y^2}{2} = \frac{x^2}{2} + \log \left| x \right| + C\]
\[\text{ Hence,} \frac{y^3}{3} + \frac{y^2}{2} = \frac{x^2}{2} + \log \left| x \right| +\text{ C is the required solution }. \]
APPEARS IN
संबंधित प्रश्न
Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].
Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[y = \left( \frac{dy}{dx} \right)^2\]
|
\[y = \frac{1}{4} \left( x \pm a \right)^2\]
|
Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]
Function y = log x
Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex
Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex
tan y dx + sec2 y tan x dy = 0
Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]
x2 dy + y (x + y) dx = 0
Solve the following initial value problem:-
\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]
Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).
A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.
Define a differential equation.
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
The differential equation satisfied by ax2 + by2 = 1 is
The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]
Form the differential equation representing the family of curves y = a sin (x + b), where a, b are arbitrary constant.
Solve the following differential equation.
`y^3 - dy/dx = x dy/dx`
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
Solve the following differential equation.
`xy dy/dx = x^2 + 2y^2`
Choose the correct alternative.
The solution of `x dy/dx = y` log y is
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0
Solve: `("d"y)/("d"x) + 2/xy` = x2
Choose the correct alternative:
Differential equation of the function c + 4yx = 0 is
Solve the following differential equation
`y log y ("d"x)/("d"y) + x` = log y
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.