Advertisements
Advertisements
प्रश्न
xy (y + 1) dy = (x2 + 1) dx
उत्तर
We have,
\[xy\left( y + 1 \right)dy = \left( x^2 + 1 \right)dx\]
\[ \Rightarrow \left\{ y\left( y + 1 \right) \right\}dy = \frac{x^2 + 1}{x}dx\]
\[ \Rightarrow \left( y^2 + y \right)dy = \left( x + \frac{1}{x} \right)dx\]
Integrating both sides, we get
\[\int\left( y^2 + y \right)dy = \int\left( x + \frac{1}{x} \right)dx\]
\[ \Rightarrow \int y^2 dy + \int y dy = \int x dx + \int\frac{1}{x}dx\]
\[ \Rightarrow \frac{y^3}{3} + \frac{y^2}{2} = \frac{x^2}{2} + \log \left| x \right| + C\]
\[\text{ Hence,} \frac{y^3}{3} + \frac{y^2}{2} = \frac{x^2}{2} + \log \left| x \right| +\text{ C is the required solution }. \]
APPEARS IN
संबंधित प्रश्न
Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]
Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]
Function y = log x
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x
Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]
Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.
y ex/y dx = (xex/y + y) dy
(y2 − 2xy) dx = (x2 − 2xy) dy
3x2 dy = (3xy + y2) dx
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]
In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]
Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]
Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\] are rectangular hyperbola.
The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).
Define a differential equation.
The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by
The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is
If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]
For each of the following differential equations find the particular solution.
(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0
Solve the following differential equation.
x2y dx − (x3 + y3 ) dy = 0
A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`