हिंदी

Xy (Y + 1) Dy = (X2 + 1) Dx - Mathematics

Advertisements
Advertisements

प्रश्न

xy (y + 1) dy = (x2 + 1) dx

उत्तर

We have, 
\[xy\left( y + 1 \right)dy = \left( x^2 + 1 \right)dx\]
\[ \Rightarrow \left\{ y\left( y + 1 \right) \right\}dy = \frac{x^2 + 1}{x}dx\]
\[ \Rightarrow \left( y^2 + y \right)dy = \left( x + \frac{1}{x} \right)dx\]
Integrating both sides, we get 
\[\int\left( y^2 + y \right)dy = \int\left( x + \frac{1}{x} \right)dx\]
\[ \Rightarrow \int y^2 dy + \int y dy = \int x dx + \int\frac{1}{x}dx\]
\[ \Rightarrow \frac{y^3}{3} + \frac{y^2}{2} = \frac{x^2}{2} + \log \left| x \right| + C\]
\[\text{ Hence,} \frac{y^3}{3} + \frac{y^2}{2} = \frac{x^2}{2} + \log \left| x \right| +\text{ C is the required solution }. \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.07 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.07 | Q 5 | पृष्ठ ५५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[\frac{d^2 y}{d x^2} + 4y = 0\]

Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]


Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]

Function y = log x


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x


\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]

\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y\left( 2 \right) = 0\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[5\frac{dy}{dx} = e^x y^4\]

\[x\sqrt{1 - y^2} dx + y\sqrt{1 - x^2} dy = 0\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[\frac{dy}{dx} = y \tan 2x, y\left( 0 \right) = 2\] 

Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]


Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.


\[xy\frac{dy}{dx} = x^2 - y^2\]

y ex/y dx = (xex/y + y) dy


(y2 − 2xy) dx = (x2 − 2xy) dy


3x2 dy = (3xy + y2) dx


\[\left[ x\sqrt{x^2 + y^2} - y^2 \right] dx + xy\ dy = 0\]

Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]


In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]


Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]


Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\]  are rectangular hyperbola.


The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).


Define a differential equation.


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


For each of the following differential equations find the particular solution.

(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0


Solve the following differential equation.

x2y dx − (x3 + y3 ) dy = 0


A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.


Select and write the correct alternative from the given option for the question

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in


Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×