हिंदी

X Y D Y D X = X 2 − Y 2 - Mathematics

Advertisements
Advertisements

प्रश्न

\[xy\frac{dy}{dx} = x^2 - y^2\]

उत्तर

We have, 
\[xy\frac{dy}{dx} = x^2 - y^2 \]
\[ \Rightarrow \frac{dy}{dx} = \frac{x^2 - y^2}{xy}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{x^2 - v^2 x^2}{v x^2}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{1 - v^2}{v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 - v^2}{v} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 - 2 v^2}{v}\]
\[ \Rightarrow \frac{v}{1 - 2 v^2}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{v}{1 - 2 v^2}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \frac{- 1}{4}\log \left| 1 - 2 v^2 \right| = \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| 1 - 2 v^2 \right| = - 4\log \left| x \right| - 4 \log C\]
\[ \Rightarrow \log \left| \left( 1 - 2 v^2 \right)\left( x^4 \right) \right| = \log \frac{1}{C^4}\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow \log \left| x^2 \left( x^2 - 2 y^2 \right) \right| = \log \frac{1}{C^4}\]
\[ \Rightarrow x^2 \left( x^2 - 2 y^2 \right) = C_1 \]
where
\[ C_1 = \frac{1}{C^4}\]
\[\text{ Hence, } x^2 \left( x^2 - 2 y^2 \right) = C_1\text{ is the required solution }.\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.09 [पृष्ठ ८३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.09 | Q 9 | पृष्ठ ८३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the equation for x: `sin^(-1)  5/x + sin^(-1)  12/x = pi/2, x != 0`


Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]


Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


Verify that \[y = ce^{tan^{- 1}} x\]  is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} + y = y^2\]
\[y = \frac{a}{x + a}\]

Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]

Function y = ex + 1


\[\sqrt{a + x} dy + x\ dx = 0\]

\[x\frac{dy}{dx} + 1 = 0 ; y \left( - 1 \right) = 0\]

\[\frac{dy}{dx} = \frac{1 + y^2}{y^3}\]

\[\frac{dy}{dx} = \frac{1 - \cos 2y}{1 + \cos 2y}\]

xy (y + 1) dy = (x2 + 1) dx


\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]

(1 − x2) dy + xy dx = xy2 dx


(y2 + 1) dx − (x2 + 1) dy = 0


dy + (x + 1) (y + 1) dx = 0


\[xy\frac{dy}{dx} = y + 2, y\left( 2 \right) = 0\]

\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]


Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.


\[\frac{dy}{dx} = \left( x + y + 1 \right)^2\]

\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

\[\frac{dy}{dx} + 1 = e^{x + y}\]

\[2xy\frac{dy}{dx} = x^2 + y^2\]

The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.


Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.


At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.


The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.


Which of the following differential equations has y = C1 ex + C2 ex as the general solution?


If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
xy = log y + k y' (1 - xy) = y2

In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = xn `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0`

Solve the following differential equation.

y2 dx + (xy + x2 ) dy = 0


Solve the following differential equation.

`xy  dy/dx = x^2 + 2y^2`


Solve the following differential equation.

`dy/dx + y` = 3


x2y dx – (x3 + y3) dy = 0


Choose the correct alternative:

General solution of `y - x ("d"y)/("d"x)` = 0 is


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


If `y = log_2 log_2(x)` then `(dy)/(dx)` =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×