Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{dy}{dx} = \frac{1 + y^2}{y^3}\]
\[\Rightarrow \frac{dx}{dy} = \frac{y^3}{1 + y^2}\]
\[ \Rightarrow dx = \frac{y^3}{1 + y^2}dy\]
Integrating both sides, we get
\[\int dx = \int\frac{y^3}{1 + y^2}dy\]
\[ \Rightarrow x = \int\frac{y + y^3 - y}{1 + y^2}dy\]
\[ \Rightarrow x = \int\frac{\left( 1 + y^2 \right)y - y}{1 + y^2}dy\]
\[ \Rightarrow x = \int y dy - \int\frac{y}{1 + y^2}dy\]
\[ \Rightarrow x = \frac{y^2}{2} - \int\frac{y}{1 + y^2}dy\]
\[\text{ Putting }1 + y^2 = t \text{ we get }\]
\[2y dy = dt\]
\[ \therefore x = \frac{y^2}{2} - \frac{1}{2}\int\frac{1}{t}dt\]
\[ \Rightarrow x = \frac{y^2}{2} - \frac{1}{2}\log\left| t \right| + C\]
\[ \Rightarrow x = \frac{y^2}{2} - \frac{1}{2}\log\left| 1 + y^2 \right| + C ...........\left( \because t = 1 + y^2 \right)\]
\[\text{ Hence, }x = \frac{y^2}{2} - \frac{1}{2}\log\left| 1 + y^2 \right| +\text{ C is the required solution.}\]
APPEARS IN
संबंधित प्रश्न
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
C' (x) = 2 + 0.15 x ; C(0) = 100
(1 + x2) dy = xy dx
xy dy = (y − 1) (x + 1) dx
tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y)
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
(y2 − 2xy) dx = (x2 − 2xy) dy
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]
A population grows at the rate of 5% per year. How long does it take for the population to double?
Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\] and tangent at any point of which makes an angle tan−1 \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.
Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.
Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.
The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.
Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\] are rectangular hyperbola.
The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
The solution of the differential equation y1 y3 = y22 is
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(a^2-x^2)` `x+y(dy/dx)=0`
If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = xn | `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0` |
For each of the following differential equations find the particular solution.
(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0
For the following differential equation find the particular solution.
`(x + 1) dy/dx − 1 = 2e^(−y)`,
when y = 0, x = 1
Solve the following differential equation.
x2y dx − (x3 + y3 ) dy = 0
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
The solution of `dy/ dx` = 1 is ______
y2 dx + (xy + x2)dy = 0
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.