हिंदी

X D Y D X + Y = Y 2 - Mathematics

Advertisements
Advertisements

प्रश्न

\[x\frac{dy}{dx} + y = y^2\]

उत्तर

We have,
\[x\frac{dy}{dx} + y = y^2 \]
\[ \Rightarrow x\frac{dy}{dx} = y^2 - y\]
\[ \Rightarrow \frac{1}{y^2 - y}dy = \frac{1}{x}dx\]
Integrating both sides, we get 
\[\int\frac{1}{y^2 - y}dy = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1}{y\left( y - 1 \right)}dy = \int\frac{1}{x}dx . . . . . \left( 1 \right)\]
\[\text{ Let }\frac{1}{y\left( y - 1 \right)} = \frac{A}{y} + \frac{B}{y - 1}\]
\[ \Rightarrow 1 = A\left( y - 1 \right) + B\left( y \right)\]
\[\text{ Putting }y = 0,\text{ we get }\]
\[1 = - A\]
\[ \Rightarrow A = - 1\]
\[\text{ Putting }y = 1, \text{ we get }\]
\[1 = B\]
\[ \therefore \frac{1}{y\left( y - 1 \right)} = \frac{- 1}{y} + \frac{1}{y - 1}\]
\[ \Rightarrow \int\frac{1}{y\left( y - 1 \right)}dy = \int\frac{- 1}{y} dy + \int\frac{1}{y - 1}dy . . . . . \left( 2 \right) \]
From (1) & (2), we get 
\[\int\frac{- 1}{y} dy + \int\frac{1}{y - 1}dy = \int\frac{1}{x}dx \]
\[ \Rightarrow - \log \left| y \right| + \log \left| y - 1 \right| = \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| \frac{y - 1}{y} \right| - \log \left| x \right| = \log C\]
\[ \Rightarrow \log\left| \frac{y - 1}{xy} \right| = \log C\]
\[ \Rightarrow \frac{y - 1}{xy} = C\]
\[ \Rightarrow y - 1 = Cxy\]
\[\text{ Hence, }y - 1 = Cxy\text{  is the required solution .}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.07 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.07 | Q 9 | पृष्ठ ५५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[y\frac{d^2 x}{d y^2} = y^2 + 1\]

Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]


Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]

 


\[\left( x - 1 \right)\frac{dy}{dx} = 2 xy\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[\frac{dy}{dx} = e^{x + y} + e^y x^3\]

Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]

 


Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]

 


\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

\[\frac{dy}{dx} = \frac{\left( x - y \right) + 3}{2\left( x - y \right) + 5}\]

\[\frac{dy}{dx} = \left( x + y \right)^2\]

\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

\[xy\frac{dy}{dx} = x^2 - y^2\]

y ex/y dx = (xex/y + y) dy


Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]


Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]


Solve the following initial value problem:-

\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]


Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.

 

Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.


Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


Form the differential equation representing the family of curves y = a sin (x + b), where ab are arbitrary constant.


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


Solve the following differential equation.

`dy /dx +(x-2 y)/ (2x- y)= 0`


Solve the following differential equation.

`x^2 dy/dx = x^2 +xy - y^2`


Solve the following differential equation.

`dy/dx + 2xy = x`


Choose the correct alternative.

The differential equation of y = `k_1 + k_2/x` is


 `dy/dx = log x`


Select and write the correct alternative from the given option for the question

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in


Select and write the correct alternative from the given option for the question 

Differential equation of the function c + 4yx = 0 is


Solve the differential equation `("d"y)/("d"x) + y` = e−x 


Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0


Solve: `("d"y)/("d"x) + 2/xy` = x2 


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


If `y = log_2 log_2(x)` then `(dy)/(dx)` =


Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×