Advertisements
Advertisements
प्रश्न
Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]
उत्तर
We have,
\[ xy\frac{dy}{dx} = 1 + x + y + xy\]
\[ \Rightarrow xy\frac{dy}{dx} = \left( 1 + x \right)\left( 1 + y \right)\]
\[ \Rightarrow \frac{y}{1 + y}dy = \frac{\left( 1 + x \right)}{x}dx\]
Integrating both sides, we get
\[\int\frac{y}{1 + y}dy = \int\frac{\left( 1 + x \right)}{x}dx\]
\[ \Rightarrow \int\frac{1 + y - 1}{1 + y}dy = \int\frac{\left( 1 + x \right)}{x}dx\]
\[ \Rightarrow \int dy - \int\frac{1}{1 + y}dy = \int\frac{1}{x}dx + \int dx\]
\[ \Rightarrow y - \log \left| 1 + y \right| = \log \left| x \right| + x + C\]
\[ \Rightarrow y = \log \left| x \right| + \log \left| 1 + y \right| + x + C\]
\[ \Rightarrow y = \log \left| x\left( 1 + y \right) \right| + x + C \]
\[\text{ Hence, }y = \log \left| x\left( 1 + y \right) \right| + x + \text{ C is the required solution }.\]
APPEARS IN
संबंधित प्रश्न
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x
Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2
\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]
3x2 dy = (3xy + y2) dx
Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?
In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]
Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\] at any point (x, y) on it.
Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.
At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.
The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]
The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.
If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`
Solve the differential equation:
`"x"("dy")/("dx")+"y"=3"x"^2-2`
Choose the correct option from the given alternatives:
The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is
In each of the following examples, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = ex | `dy/ dx= y` |
Solve the following differential equation.
x2y dx − (x3 + y3 ) dy = 0
Solve the following differential equation.
(x2 − y2 ) dx + 2xy dy = 0
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
y2 dx + (xy + x2)dy = 0
Select and write the correct alternative from the given option for the question
The differential equation of y = Ae5x + Be–5x is
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______
The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.
Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.