Advertisements
Advertisements
प्रश्न
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x
उत्तर
We have,
\[y = \sin x.............(1)\]
Differentiating both sides of (1) with respect to x, we get
\[\frac{dy}{dx} = \cos x...........(2)\]
Differentiating both sides of (2) with respect to x, we get
\[\frac{d^2 y}{d x^2} = - \sin x\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = - y ..........\left[\text{Using (1)}\right]\]
⇒ \[\frac{d^2 y}{d x^2} + y = 0\]
It is the given differential equation.
Here, \[y = \sin x\] satisfies the given differential equation; hence, it is a solution.
Also, when \[x = 0, y = \sin 0 = 0,\text{ i.e. }, y\left( 0 \right) = 0\]
And, when \[x = 0, y' = \cos 0 = 1,\text{ i.e. }, y'\left( 0 \right) = 1\]
Hence, \[y = \sin x\] is the solution to the given initial value problem.
APPEARS IN
संबंधित प्रश्न
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + e−x
tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y)
Solve the following differential equation:
(xy2 + 2x) dx + (x2 y + 2y) dy = 0
Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]
Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.
In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).
In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]
Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.
The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).
The solution of the differential equation y1 y3 = y22 is
The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.
Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]
Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0
Choose the correct option from the given alternatives:
The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
xy = log y + k | y' (1 - xy) = y2 |
Form the differential equation from the relation x2 + 4y2 = 4b2
Solve the following differential equation.
`(x + y) dy/dx = 1`
Solve the following differential equation.
`(x + a) dy/dx = – y + a`
The solution of `dy/ dx` = 1 is ______
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`
Solve the differential equation xdx + 2ydy = 0
Choose the correct alternative:
General solution of `y - x ("d"y)/("d"x)` = 0 is
Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0
y = `a + b/x`
`(dy)/(dx) = square`
`(d^2y)/(dx^2) = square`
Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`
= `x square + 2 square`
= `square`
Hence y = `a + b/x` is solution of `square`
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx
The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0
The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.