हिंदी

√ a + X D Y + X D X = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\sqrt{a + x} dy + x\ dx = 0\]
योग

उत्तर

We have, 
\[\sqrt{a + x}dy + x\ dx = 0\]
\[ \Rightarrow \sqrt{a + x}dy = - xdx\]
\[ \Rightarrow dy = \frac{- x}{\sqrt{a + x}}dx\]
\[ \Rightarrow dy = - \frac{\left( x + a - a \right)}{\sqrt{a + x}}dx\]
\[ \Rightarrow dy = - \left( \sqrt{a + x} - \frac{a}{\sqrt{a + x}} \right)dx\]
Integrating both sides, we get
\[\int dy = - \int\left( \sqrt{a + x} - \frac{a}{\sqrt{a + x}} \right)dx\]
\[ \Rightarrow y = - \frac{2 \left( a + x \right)^\frac{3}{2}}{3} + 2a\sqrt{a + x} + C\]
\[ \Rightarrow y + \frac{2}{3} \left( a + x \right)^\frac{3}{2} - 2a\sqrt{a + x} = C\]
\[\text{ Hence, }y + \frac{2}{3} \left( a + x \right)^\frac{3}{2} - 2a\sqrt{a + x} = \text{C is the solution to the given differential equation.}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.05 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.05 | Q 17 | पृष्ठ ३४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]

 


Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.


Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x


Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex


\[\sin\left( \frac{dy}{dx} \right) = k ; y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = \frac{1 - \cos 2y}{1 + \cos 2y}\]

\[\frac{dy}{dx} = \left( e^x + 1 \right) y\]

y (1 + ex) dy = (y + 1) ex dx


dy + (x + 1) (y + 1) dx = 0


\[\frac{dy}{dx} = y \tan 2x, y\left( 0 \right) = 2\] 

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

(x2 − y2) dx − 2xy dy = 0


\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]

 

Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]


A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.


Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(a^2-x^2)`              `x+y(dy/dx)=0`


Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.


The price of six different commodities for years 2009 and year 2011 are as follows: 

Commodities A B C D E F

Price in 2009 (₹)

35 80 25 30 80 x
Price in 2011 (₹) 50 y 45 70 120 105

The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = xn `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0`

Determine the order and degree of the following differential equations.

Solution D.E
y = aex + be−x `(d^2y)/dx^2= 1`

State whether the following is True or False:

The integrating factor of the differential equation `dy/dx - y = x` is e-x


Solve the differential equation:

`e^(dy/dx) = x`


Select and write the correct alternative from the given option for the question 

Differential equation of the function c + 4yx = 0 is


Solve the differential equation `("d"y)/("d"x) + y` = e−x 


Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`


Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


Solve the following differential equation

`x^2  ("d"y)/("d"x)` = x2 + xy − y2 


Choose the correct alternative:

Solution of the equation `x("d"y)/("d"x)` = y log y is


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.


There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×